37 research outputs found

    The Specific Characteristics of Childhood Obesity and the Effective Strategies to Combat Childhood Obesity in Hong Kong: A Short Review

    Get PDF
    Childhood obesity is a serious public health problem all around the world. The problem also currently exists in Hong Kong. Unhealthy lifestyle behavior may be one of key factors contributing to childhood obesity. The review revealed the specific characteristics of childhood obesity and the effective strategies in prevention of childhood obesity in Hong Kong context. Hong Kong is a metropolitan city which is interwoven eastern and western culture. The historical reasons and the complex political issues lead to overcrowded of people living in a small place. The environmental factors and the lifestyle pattern are the crucial causes contributing to childhood obesity. Parents have significant influence in shaping lifestyle behavior of children. While Chinese culture, informal childcare and more energy-dense food consumptions are the specific factors affecting children in lifestyle behavior as shown in the previous studies. The finding of the present review paper is expected to realize root causes of the prevalence of childhood obesity. On the other hand, many studies regarding to the treatment of childhood obesity were also reviewed. It was found that fewer studies were conducted to provide the combined intervention to combat childhood obesity. Generally, parental education was not the focus of childhood obesity intervention programs and parent-oriented approach was not commonly adopted in these programs. While limited childhood obesity intervention programs have been conducted in Hong Kong, it is recommended to conduct an appropriate program for children specifically in Hong Kong context. The design of preventive strategies should take into consideration of these specific characteristics in Hong Kong to reverse the increased prevalence of childhood obesity

    Age-Specific Associations of Usual Blood Pressure Variability With Cardiovascular Disease and Mortality: 10-Year Diabetes Mellitus Cohort Study.

    Get PDF
    Background The detrimental effects of increased variability in systolic blood pressure (SBP) on cardiovascular disease (CVD) and mortality risk in patients with diabetes mellitus remains unclear. This study evaluated age-specific association of usual SBP visit-to-visit variability with CVD and mortality in patients with type 2 diabetes mellitus. Methods and Results A retrospective cohort study investigated 155 982 patients with diabetes mellitus aged 45 to 84 years without CVD at baseline (2008-2010). Usual SBP variability was estimated using SBP SD obtained from a mixed-effects model. Age-specific associations (45-54, 55-64, 65-74, 75-84 years) between usual SBP variability, CVD, and mortality risk were assessed by Cox regression adjusted for patient characteristics. After a median follow-up of 9.7 years, 49 816 events (including 34 039 CVD events and 29 211 mortalities) were identified. Elevated SBP variability was independently, positively, and log-linearly associated with higher CVD and mortality risk among all age groups, with no evidence of any threshold effects. The excess CVD and mortality risk per 5 mm Hg increase in SBP variability within the 45 to 54 age group is >3 times higher than the 70 to 79 age group (hazard ratio, 1.66; 95% CI, 1.49-1.85 versus hazard ratio, 1.19; 95% CI, 1.15-1.23). The significant associations remained consistent among all subgroups. Patients with younger age had a higher association of SBP variability with event outcomes. Conclusions The findings suggest that SBP visit-to-visit variability was strongly associated with CVD and mortality with no evidence of a threshold effect in a population with diabetes mellitus. As well as controlling overall blood pressure levels, SBP visit-to-visit variability should be monitored and evaluated in routine practice, in particular for younger patients

    The Spill-Over Impact of the Novel Coronavirus-19 Pandemic on Medical Care and Disease Outcomes in Non-communicable Diseases: A Narrative Review

    Get PDF
    OBJECTIVES: The coronavirus-19 (COVID-19) pandemic has claimed more than 5 million lives worldwide by November 2021. Implementation of lockdown measures, reallocation of medical resources, compounded by the reluctance to seek help, makes it exceptionally challenging for people with non-communicable diseases (NCD) to manage their diseases. This review evaluates the spill-over impact of the COVID-19 pandemic on people with NCDs including cardiovascular diseases, cancer, diabetes mellitus, chronic respiratory disease, chronic kidney disease, dementia, mental health disorders, and musculoskeletal disorders. METHODS: Literature published in English was identified from PubMed and medRxiv from January 1, 2019 to November 30, 2020. A total of 119 articles were selected from 6,546 publications found. RESULTS: The reduction of in-person care, screening procedures, delays in diagnosis, treatment, and social distancing policies have unanimously led to undesirable impacts on both physical and psychological health of NCD patients. This is projected to contribute to more excess deaths in the future. CONCLUSION: The spill-over impact of COVID-19 on patients with NCD is just beginning to unravel, extra efforts must be taken for planning the resumption of NCD healthcare services post-pandemic

    Retrospective cohort study to investigate the 10-year trajectories of disease patterns in patients with hypertension and/or diabetes mellitus on subsequent cardiovascular outcomes and health service utilisation: a study protocol.

    Get PDF
    INTRODUCTION: Hypertension (HT) and diabetes mellitus (DM) and are major disease burdens in all healthcare systems. Given their high impact on morbidity, premature death and direct medical costs, we need to optimise effectiveness and cost-effectiveness of primary care for patients with HT/DM. This study aims to find out the association of trajectories in disease patterns and treatment of patients with HT/DM including multimorbidity and continuity of care with disease outcomes and service utilisation over 10 years in order to identify better approaches to delivering primary care services. METHODS AND ANALYSIS: A 10-year retrospective cohort study on a population-based primary care cohort of Chinese patients with documented doctor-diagnosed HT and/or DM, managed in the Hong Kong Hospital Authority (HA) public primary care clinics from 1 January 2006 to 31 December 2019. Data will be extracted from the HA Clinical Management System to identify trajectory patterns of patients with HT/DM. Complications defined by ICPC-2/International Classification of Diseases-Ninth Revision, Clinical Modification diagnosis codes, all-cause mortality rates and public service utilisation rates are included as independent variables. Changes in clinical parameters will be investigated using a growth mixture modelling analysis with standard quadratic trajectories. Dependent variables including effects of multimorbidity, measured by (1) disease count and (2) Charlson's Comorbidity Index, and continuity of care, measured by the Usual Provide Continuity Index, on patient outcomes and health service utilisation will be investigated. Multivariable Cox proportional hazards regression will be conducted to estimate the effect of multimorbidity and continuity of care after stratification of patients into groups according to respective definitions. ETHICS AND DISSEMINATION: This study was approved by the institutional review board of the University of Hong Kong-the HA Hong Kong West Cluster, reference no: UW 19-329. The study findings will be disseminated through peer-reviewed publications and international conferences. TRIAL REGISTRATION NUMBER: NCT04302974

    In patient stroke rehabilitation efficiency: Influence of organization of service delivery and staff numbers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Outcomes of inpatient stroke rehabilitation need to be reviewed in terms of optimal resource utilization (staff time, service organization, and duration of stay). We compared FIM efficiency scores between three hospitals, and also variation in FIM scores over a ten year period in one hospital undergoing reduction in staff numbers, to examine the relationship between outcome and service characteristics.</p> <p>Method</p> <p>This is a retrospective study comparing the mean FIM efficiency for stroke patients (FIM score – FIM admission score) divided by duration of stay for 2005 among three rehabilitation hospitals adjusting for age and baseline FIM score, and a longitudinal study of changes in mean FIM efficiency during a ten year period in one hospital, to examine the effects of different service organization and staff numbers.</p> <p>Results</p> <p>FIM efficiency (FIMEG) was inversely associated with age, and positively associated with admission FIM score. FIMEG was higher in the hospital with a coordinated care plan involving medical, nursing, occupational, physiotherapy staff and other healthcare providers working as a team, with a seamless interface with community rehabilitation services. Over a ten year period, reduction in staff numbers was associated with reduction in FIMEG, which may be offset to some extent by service re-engineering.</p> <p>Conclusion</p> <p>Within hospital organization of stroke rehabilitation services may influence outcome. A critical number of staff may be identified for the provision of services, below which rehabilitation efficiency may be affected.</p

    Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

    Get PDF
    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Community’s Seventh Framework Programme under grant agreement n8 223175 (HEALTH-F2–2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products or organizations imply endorsement t by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and M.C.S. is a NHMRC Senior Research Fellow. The OFBCR work was also supported by the Canadian Institutes of Health Research ‘CIHR Team in Familial Risks of Breast Cancer’ program. The ABCS was funded by the Dutch Cancer Society Grant no. NKI2007-3839 and NKI2009-4363. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). E.S. is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, UK. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). I.T. is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental l and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR), and the Association for Research against Cancer (ARC). The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital.The CNIO-BCS was supported by the Genome Spain Foundation the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. D.A. was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence e data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), as well as the Department of Internal Medicine , Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation , by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to N.B), and the Friends of Hannover Medical School (to N.B.). Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation , the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow Up Study was funded by the NHMRC (145684, 288704, 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute’s Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the ‘Stichting tegen Kanker’ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association ciation for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5 × 1000’). The MCBCS was supported by the NIH grants (CA122340, CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19,tel:08/1/35/19./550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to A.L.B.D., FUGE-NFR 181600/ V11 to V.N.K. and a Swizz Bridge Award to A.L.B.D.). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NLCP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Ma¨rit and Hans Rausings Initiative Against Breast Cancer. KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linnaeus Centre (Contract ID 70867902) financed by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (A∗STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation KC was financed by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCCS was provided by NIH grant R01 CA092447. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the National Medical Research Council Start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). The recruitment of controls by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC) was funded by the Biomedical Research Council (grant number: 05/1/21/19/425). SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. K. J. is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128978), the Breast Cancer Research Foundation , Komen Foundation for the Cure, the Ohio State University Comprehensive Cancer Center, the Stefanie Spielman Fund for Breast Cancer Research and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMOKRITOS) has been co-financed by the European Union (European Social Fund – ESF) and Greek National Funds through the Operational Program ‘Education and Life-long Learning’ of the National Strategic Reference Framework (NSRF)—Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust.This is the advanced access published version distributed under a Creative Commons Attribution License 2.0, which can also be viewed on the publisher's webstie at: http://hmg.oxfordjournals.org/content/early/2014/07/04/hmg.ddu311.full.pdf+htm

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Adaptive refinement analysis using hybrid-stress transition elements

    No full text
    In this paper, 4-node to 7-node hybrid-stress transition elements are developed for automatic adaptive refinement analysis of plane elasticity problems. The displacement-based transition quadrilateral elements are first adopted and applied to refinement analysis using both full and reduced integration schemes. As the stress field over the displacement-based transition elements is not continuous, a more smooth stress pattern is desirable and could enhance the performance of the element. Indeed, continuous stress field of various orders can be easily introduced into a displacement-based element through a variational procedure based on the Hellinger-Reissner functional. Of the same kinematics and displacement pattern, the resulting hybrid-stress transition elements are more superior to the displacement-based elements in possessing a more continuous high quality stress field within the element. The hybrid-stress transition elements are tested with classical benchmark examples, and the results indicate that hybrid-stress transition elements are consistently more efficient than the displacement-based counterparts in adaptive refinement analysis. A more economical rank-deficient version of hybrid-stress transition elements is also available. While they are less expensive to evaluate, they enjoy a very similar convergence rate as the rank-sufficient hybrid-stress transition elements. © 2006 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex

    Alcohol use and suicide attempts among adolescents

    No full text
    published_or_final_versionPublic HealthMasterMaster of Public Healt
    corecore