59 research outputs found

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Instability of aquaglyceroporin (Aqp) 2 contributes to drug resistance in trypanosoma brucei

    Get PDF
    Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance

    Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans

    Get PDF
    Maintenance of fluid homeostasis is critical to establishing and maintaining normal physiology. The landmark discovery of membrane water channels (aquaporins; AQPs) ushered in a new area in osmoregulatory biology that has drawn from and contributed to diverse branches of biology, from molecular biology and genomics to systems biology and evolution, and from microbial and plant biology to animal and translational physiology. As a result, the study of AQPs provides a unique and integrated backdrop for exploring the relationships between genes and genome systems, the regulation of gene expression, and the physiologic consequences of genetic variation. The wide species distribution of AQP family members and the evolutionary conservation of the family indicate that the control of membrane water flux is a critical biological process. AQP function and regulation is proving to be central to many of the pathways involved in individual physiologic systems in both mammals and anurans. In mammals, AQPs are essential to normal secretory and absorptive functions of the eye, lung, salivary gland, sweat glands, gastrointestinal tract, and kidney. In urinary, respiratory, and gastrointestinal systems, AQPs are required for proper urine concentration, fluid reabsorption, and glandular secretions. In anurans, AQPs are important in mediating physiologic responses to changes in the external environment, including those that occur during metamorphosis and adaptation from an aquatic to terrestrial environment and thermal acclimation in anticipation of freezing. Therefore, an understanding of AQP function and regulation is an important aspect of an integrated approach to basic biological research

    An intron polymorphism of the fibronectin gene is associated with end-stage knee osteoarthritis in a Han Chinese population: two independent case-control studies

    Get PDF
    BACKGROUND: Knee osteoarthritis (OA) is a complex disease involving both biomechanical and metabolic factors that alter the tissue homeostasis of articular cartilage and subchondral bone. The catabolic activities of extracellular matrix degradation products, especially fibronectin (FN), have been implicated in mediating cartilage degradation. Chondrocytes express several members of the integrin family which can serve as receptors for FN including integrins α5β1, αvβ3, and αvβ5. The purpose of this study was to determine whether polymorphisms in the FN (FN-1) and integrin genes are markers of susceptibility to, or severity of, knee OA in a Han Chinese population. METHODS: Two independent case–control studies were conducted on 928 patients with knee OA and 693 healthy controls. Ten single nucleotide polymorphisms (SNPs) of FN-1 and the integrin αV gene (ITGAV) were detected using the ABI 7500 real-time PCR system. RESULTS: The AT heterozygote in FN-1 (rs940739A/T) was found to be significantly associated with knee OA (adjusted OR = 1.44; 95% CI = 1.16–1.80) in both stages of the study. FN-1 rs6725958C/A and ITGAV rs10174098A/G SNPs were only associated with knee OA when both study groups were combined. Stratifying the participants by Kellgren-Lawrence (KL) score identified significant differences in the FN-1 rs6725958C/A and rs940739 A/T genotypes between patients with grade 4 OA and controls. Haplotype analyses revealed that TGA and TAA were associated with a higher risk of OA, and that TAG conferred a lower risk of knee OA in the combined population. CONCLUSIONS: Our study suggests that the FN-1 rs940739A/T polymorphism may be an important risk factor of genetic susceptibility to knee OA in the Han Chinese population

    Ion Channels as Reporters of Membrane Receptor Function: Automated Analysis in Xenopus Oocytes

    No full text
    International audienceG-protein-coupled receptors (GPCR) are the most widely used system of communication used by cells. They sense external signals and translate them into intracellular signals. The information is carried mechanically across the cell membrane, without perturbing its integrity. Agonist binding on the extracellular side causes a change in receptor conformation which propagates to the intracellular side and causes release of activated G-proteins, the first messengers of a variety of signaling cascades.Permitting access to powerful electrophysiological techniques, ion channels can be employed to monitor precisely the most proximal steps of GPCR signaling, receptor conformational changes, and G-protein release. The former is achieved by physical attachment of a potassium channel to the GPCR to create an Ion-Channel Coupled Receptor (ICCR). The latter is based on the use of G-protein-regulated potassium channels (GIRK). We describe here how these two systems may be used in the Xenopus oocyte heterologous system with a robotic system for increased throughput

    Degradation of Pharmaceuticals and Personal Care Products by White-Rot Fungi—a Critical Review

    No full text
    corecore