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Abstract

Defining mode of action is vital for both developing new drugs and predicting potential resis-

tance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is

predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/

glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisa-

tion with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2

mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine trans-

location across the plasma membrane or via binding to TbAQP2, with subsequent endocyto-

sis and presumably transport across the endosomal/lysosomal membrane, but as trafficking

and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that

TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the

lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-

oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER

retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant

parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover.

These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability

contributes towards the emergence of drug resistance.

Author summary

Understanding mechanisms that make cells sensitive to xenobiotics (including drugs) is

of great importance to both drug development and public health. For the latter, emer-

gence of resistance is particularly important to monitor as well as to predict. Trypano-

somes are a major global health burden and for several drugs resistance has emerged and

is a considerable concern. Here we have examined the sensitivity to pentamidine, which is

mainly mediated by an aquaglyceroporin, a surface channel. We find that the protein is

highly sensitive to mutation, rendering the protein unstable, and rendering parasites
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resistant to pentamidine. As this also includes mutant forms recovered from patients

where pentamidine treatment has failed, we suggest that the instability of aquaglycero-

porin is an important contributor towards treatment failure.

Introduction

Human African trypanosomiasis (HAT) is a neglected tropical disease affecting sub-Saharan

countries [1–4]. HAT progresses by two stages: a haemolymphatic stage, in which the parasite

successfully colonises the bloodstream, lymphatics, skin, adipose tissue and multiple organs

followed by a meningoencephalic stage characterised by the emergence of parasites in the cen-

tral nervous system (CNS) [2,5]. Several drugs are used to treat HAT; currently suramin and

pentamidine are the drugs of choice for treatment of the haemolymphatic stage of T. brucei
rhodesiense and T. brucei gambiense infections respectively, whereas melarsoprol, eflornithine

or combined nifurtimox-eflornithine (NECT) therapy are recommended for the meningoen-

cephalic stage [6,7], and more recently fexinidazole as second-line treatment for T. b. rhode-
siense [8].

Two new drugs, fexinidazole [8] and acoziborole, recently completed clinical trials and

opened a new front in HAT chemotherapy. Drug development, successful public health initia-

tives and active case-monitoring programs have all contributed to the anticipated elimination

of gambiense HAT as a major public health problem in the coming decade [9]. However, vigi-

lance and understanding of drug mechanisms and possible resistance pathways remain essen-

tial to maintaining this situation, and rhodesiense HAT is unlikely to be eliminated as it is

highly zoonotic [10]. Genome-wide RNAi screens identified a number of genes associated

with pentamidine sensitivity that, together with evidence from melarsoprol-pentamidine

cross-resistance (MPXR), identified aquaglyceroporin 2 as the primary determinant for drug-

uptake [11,12], alongside lesser roles for the TbAT1/P2 aminopurine transporter and the low

affinity pentamidine transporter LAPT1 [13].

Aquaglyceroporins (AQPs) are an ancient family of multi-pass membrane proteins, consist-

ing of both aquaporins that exclusively transport water and aquaglyceroporins that transport

both water and uncharged low molecular weight solutes [14–16]. The T. brucei genome

encodes three AQPs (TbAQP1-3) [17], all of which are nonessential, but do control osmoregu-

lation and glycerol transport [12,18–23]. There is also evidence that the three paralogs have dif-

ferential locations within the parasite [12,20,22]. TbAQP2 and TbAQP3 are the product of a

recent gene duplication and are unique to the African trypanosome lineage [12,20,22,24].

A selectivity filter restricts the size and properties of solutes that can effectively pass through

the AQP pore [14–16]. In TbAQP1 and TbAQP3, this is formed by two constrictions of the

channel: the canonical “NPA” within two half α-helices and a narrower “aromatic/arginine”

(ar/R) motif (Fig 1A) [12,24,25]. Significantly, TbAQP2 does not retain this canonical configu-

ration, but displays an unconventional “NPS/NSA” cation filter motif. Similarly, the ar/R

motif in TbAQP2 is replaced by a neutral leucine at position 264 (L264), followed by aliphatic,

rather than aromatic, residues (A88, I110, V249 and L258), which are equivalent to the “IVLL”

motif observed in the selectivity pore of other AQPs [12,22]. These substitutions may permit

TbAQP2 to transport larger solutes, including pentamidine (340 Da) [22]. However, pentami-

dine also binds TbAQP2 with nanomolar affinity and substitution of leucine 264 by arginine

abolishes binding, leading to resistance [21], consistent with a proposed hypothesis that pent-

amidine sensitivity might be mediated by high affinity binding of pentamidine to TbAQP2

and internalisation via endocytosis [21]. It is also plausible that pentamidine exploits both
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channel activity and endocytosis of TbAQP2 to gain entry to the trypanosome cytoplasm. The

exploitation of an endocytic route is supported by studies using nanobodies to deliver pentam-

idine into trypanosomes that are otherwise pentamidine resistant [26].

Melarsoprol-pentamidine cross-resistant strains and field isolates from relapse patients all

possess mutations at the locus encoding TbAQP2, including deletions, single nucleotide poly-

morphisms and chimerisation [26–29]. Pentamidine-resistant trypanosomes from a cohort of

relapse patients from the Democratic Republic of Congo (DRC) also have TbAQP2 chimerisa-

tion with the coding sequence for the C-terminal trans-membrane domain replaced by

TbAQP3 and, in most cases, without altering the selectivity filter characteristic of TbAQP2

(NSA/NPS–IVLL motifs) [29–31]. These observations indicate that, in addition to the

sequence at the selectivity pore, other features are likely to impact drug uptake and transport

in T. brucei [32].

Here, we investigated TbAQP2 trafficking to better vfunderstand the basis of drug resis-

tance in chimeras where the selectivity filter remains intact. We find that AQPs form a tetra-

mer of tetramers (4x4) quaternary structure, which correlates with high stability, flagellar

pocket localisation and functionality. Furthermore, we demonstrate that TbAQP2 is ubiquity-

lated and highly sensitive to mutation of cytoplasmically oriented lysine residues. Finally, we

find that chimerisation of TbAQP2, as observed in trypanosomes from DRC patients, leads to

protein instability and mislocalisation, thus explaining the basis of drug resistance in clinical

isolates of T. brucei.

Materials and methods

Cell culture and drug sensitivity

Bloodstream form (BSF) T. brucei 2T1 and all derivatives were cultured in HMI-11 (supple-

mented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin, 100 U/ml

streptomycin and 2 mM L-glutamine) at 37˚C with 5% CO2 in a humid atmosphere in non-

adherent culture flasks with vented caps at densities between 1 x 105 and 1.5 x 106 cells/ml.

2T1 cells were maintained in the presence of phleomycin (1 μg/ml) and puromycin (1 μg/ml).

Following transformation, cells were selected and maintained with hygromycin (2.5 μg/ml) or

phleomycin (1 μg/ml) as appropriate. EC50 determinations were performed using AlamarBlue

(resazurin sodium salt) as described [33,34], with 5 mM glycerol added as appropriate; drug

exposure was for 66 hours and Alamar Blue incubation overnight. Plates were read on an Infi-

nite 200Pro plate-reader (Tecan) with the following parameters: excitation, 530nm; emission

585 nm; filter cut-off, 570 nm. Proliferation was monitored by dilution to 1 x 105 cells/ml and

counting daily. For transfections, 3 x 107 bloodstream form cells were harvested by centrifuga-

tion and transfected with 5–10 μg of linearized plasmid DNA using an Amaxa Nucleofector II

(Lonza) with program X-001. Bafilomycin A1, MG132, Salicylhydroxamic acid (SHAM), glyc-

erol, Alamar Blue, pentamidine and ammonium chloride were all from Sigma. Unless stated

Fig 1. Schematic representation of constructs used in this study. A) 3D structural predictions of the AQP2

harbouring three haemagglutinin tags at either terminus. Top panel; lateral and cytoplasmic face view of simulated

model of T. brucei AQP2 tetramer embedded in a POPC lipid bilayer. Lipids are shown in surface and line

representations in cyan. Each monomer of AQP2 is shown in cartoon representation. Bottom panel; lateral and

cytoplasmic face view of T. brucei AQP2 showing key amino acids (in spheres) from NSA (cyan), NPS (orange) and

IVLL (magenta) domains. B) N- and C-terminal tagged TbAQP2 variants with a tandem of three hemagglutinin

(3xHA) epitopes. Positions of predicted trans-membrane domains (TMD) are indicated with numbers above solid

blocks. Similarly, lysine residues that were manipulated in this study are highlighted. C) Wild type TbAQP1 (blue),

TbAQP2 (grey), TbAQP3 (green), and chimeras used (40AT, AQP2TMD4, and AQP2TMD5). TMDs for AQP1, 2 and 3

are shown as blocks and in blue, grey and green, respectively.

https://doi.org/10.1371/journal.pntd.0008458.g001
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otherwise, the induction of the recombinant proteins was carried out with Tetracycline (1 μg/

ml) for 24 hours under normal culture conditions. For statistical comparisons, we employed a

one-way ANOVA with a Dunnett’s multiple comparison test for normally distributed data, or

Kruskal-Wallis one-way ANOVA for non-parametric datasets.

Recombinant DNA manipulation

To express N- or C-terminal HA-tagged AQP constructs, a tandem of three HA tags was

inserted by PCR using the primers: Tb3xHA_AQP2_Fwd (HindIII): CCCAAGCTTGGGATG

TACCCATACGATGTTCCAGATTACGCTTACCCATACGATGTTCCAGATTACGCTTA

CCCATACGATGTTCCAGATTACGCTCAGAGCCAACCAGACAATGTG and Tb3xHA_

AQP2_Rev (BamHI): CGCGGATCCGCGTTAGTGTGGAAGAAAATATTTGTAC. The

PCR products were inserted into the tetracycline-induced pRPaTAG vector [11] after digestion

with BamHI/HindIII. All constructs were verified by sequencing (MRC-PPU DNA Sequenc-

ing facility, University of Dundee). Prior to introduction into trypanosomes pRPaTAG con-

structs were linearized with AscI and purified/sterilized by phenol:chloroform extraction.

TbAQP2, with all lysine residues predicted facing the cytoplasm mutated (TbAQP25K>R) was

designed and synthesized by GenScript and verified by sequencing. Point mutations rescuing

individual lysine residues were introduced using the Q5 Site-Directed Mutagenesis Kit (NEB)

and confirmed by sequencing. Tagging of lysine mutants was conducted as above.

Imaging

Antibodies were used at the following dilutions: rat anti-HA IgG1 (clone 3F10; Sigma) at

1:1000, rabbit anti-ISG75 (in house) at 1:500, mouse anti-p67 (from J. Bangs) at 1:500. Second-

ary antibodies (Thermo) were at: anti-rat Alexa-568 at 1:1,000, anti-rabbit Alexa-488 at 1:

1,000, anti-mouse Alexa-488 at 1: 1,000. Coverslips were mounted using Vectashield mounting

medium supplemented with 1 ug/ml 4,6-diamidino-2-phenylindole (DAPI; Vector Laborato-

ries, Inc.). Slides were examined on a Zeiss Axiovert 200 microscope with an AxioCam camera

and ZEN Pro software (Carl Zeiss, Germany). For co-localization cells were analysed by confo-

cal microscopy with a Leica TCS SP8 confocal laser scanning microscope and the Leica Appli-

cation Suite X (LASX) software (Leica, Germany). Images were acquired as z-stacks (0.25 μm).

Digital images were processed using the Omero Open microscopy environment (University of

Dundee; https://www.openmicroscopy.org/omero/). In all cases, images for a specific analysis

were acquired with identical settings.

Protein turnover

To determine protein half-life translation was blocked by addition of cycloheximide (100 μg/

ml) and cells were harvested at various times by centrifugation (800 g for 10 min at 4˚C). Cells

were washed with ice-cold PBS, then resuspended in 1x SDS sample buffer (Thermo) and

incubated at 70˚C for 10 min. Samples were subjected to standard SDS-PAGE electrophoresis.

Western blotting

Proteins were separated by electrophoresis on a 4–12% precast acrylamide Bis-Tris gel

(Thermo) and transferred to PVDF membranes using the iBlot2 system (23 V, 6 min;

Thermo). Non-specific binding was blocked using 5% (w/v) bovine serum albumin (BSA;

Sigma) in Tris-buffered saline (pH 7.4) with 0.2% (v/v) Tween-20 (TBST). Membranes were

incubated with primary antibodies diluted in TBST supplemented with 1% BSA overnight at

4˚C. Antibodies were used at the following dilutions: rat anti-HA epitope IgG1 (clone 3F10;
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Sigma) at 1:5,000, rabbit anti-ISG75 (in house) at 1: 10,000, anti-mouse b-tubulin (clone

KMX-1; Millipore) at 1:10,000, and anti-mouse Ubiquitin (clone P4D1; Santa Cruz) at 1:

1,000. Following five washes with TBST of 10 min each, membranes were incubated with sec-

ondary antibodies diluted in TBST supplemented with 1% BSA. Dilutions of horseradish per-

oxidase (HRP)-coupled secondary antibodies (Sigma) were anti-rat-HRP at 1: 10,000, anti-

rabbit-HRP at 1: 10,000, anti-mouse-HRP at 1: 10,000. Detection was carried out by incubating

membranes with ECL Prime Western Blotting System (Sigma) and GE healthcare Amersham

Hyperfilm ECL (GE). Densitometry quantification was conducted using ImageJ software

(NIH). For quantification using the Li-COR system (Li-Cor Bioscience, Lincoln NE), the fol-

lowing antibodies were diluted in Odyssey blocking buffer (Li-COR): goat anti-rabbit IgG: IR

Dye680RD and goat anti-mouse or anti-rat IgG: IRDye800CW (Li-COR). All washes were

with PBS supplemented with 0.5% Tween20. Quantitative Fluorescence signals were quantified

on an Odyssey CLx Imager and processed using Li-COR software (Li-COR).

Blue native PAGE (BN-PAGE)

BN-PAGE was performed using the NativePAGE Bis-Tris gel system (Thermo). Briefly, cells

were washed three times with 1X PBS supplemented with protease inhibitor cocktail without

EDTA (Roche) and solubilized in Native PAGE sample buffer supplemented with 10% glyc-

erol, 1% n-dodecyl-b-d-maltoside, 1x protease inhibitor cocktail without EDTA (Roche),

100 μg/ml microccocal nuclease (NEB), and 1x microccocal nuclease buffer (NEB). Samples

were incubated in solubilization buffer on ice for 30 min and centrifuged (13,000 g at 4 ˚C, 30

min). The resulting supernatants were fractionated on precast 4–16% BN gradient gels

(Thermo).

Affinity isolation

Ubiquitylated proteins were isolated using the UbiQapture-Q kit (Enzo Life Sciences, Farm-

ingdale, New York, USA) according to the manufacturer’s instructions. Ubiquitylated proteins

were isolated from a total of 1 × 107 cells lysed with TEN buffer (150 mM NaCl, 50 mM Tris-

HCl, pH 7.4, 5 mM EDTA, 1% Triton X-100), supplemented with 100 mM N-ethylmaleimide

(NEM) to inhibit deubiquitinase activity [35]. A total of 40 μl of UbiQapture-Q matrix was

pre-equilibrated in TEN buffer and incubated with cell lysates (200 μl) by rotating at 4˚C over-

night. After washing five times, captured proteins were eluted with 2x SDS-PAGE sample

buffer containing 10mM DTT. Samples were resolved in 4–12% acrylamide gels, transferred

onto PVDF membranes and analyzed by Western blotting using anti-HA antibody in blocking

buffer (TBST supplemented with 1% BSA).

Molecular modelling

A homology model of TbAQP2 tetramer (residues 68–312) was built using Modeller (version

9.20) [36,37] using as template the crystal structure of the Homo sapiens AQP10 (PDB code

6f7H) [38]. The N-terminus (residues 1–59) could not be modelled due to predicted flexibility

and low sequence similarity. T. brucei AQP2 has 33% identity compared to Homo sapiens
AQP10. Multiple sequence alignments were performed using T-Coffee [39] and ClustalW

[40]. The geometries of the homology model were refined using Maestro and verified using

PROCHECK [41] The resulting Ramachandran plots indicated a good model quality with 93%

of the residues in most favoured regions. A second model displaying K147R and K234R muta-

tions in each monomer was generated following the same protocol. Both models were refined

using all-atom molecular dynamics (MD) simulations with Desmond [42]. Each system was

embedded as a tetramer in a periodic POPC lipid bilayer generated with “System Builder” in
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Maestro and solvated in aqueous 150mM KCl. The OPLS3e force field was used to further

improve the resulting molecular model [43]. The cut-off distance for non-bonded interactions

was 9 Å. The SHAKE algorithm was applied to all bonds involving hydrogens, and an integra-

tion step of 2.0 fs was used throughout [44]. The systems were simulated with no restraints at

constant temperature (300K) and pressure (1atm) for 100ns. Protein structures and MD trajec-

tories were visually inspected and analysed using the molecular visualization programs

PyMOL, VMD [44] and Maestro [42].

Results

TbAQP2 forms stable tetrameric complexes in the bloodstream form of

T. brucei
TbAQP2 (Tb927.10.14170) is critical for water and glycerol transport activity together with

sensitivity to diamidines and melaminophenyl arsenicals in African trypanosomes [12,22,32].

Pentamidine may be a nanomolar ligand, rather than a transport substrate of TbAQP2 [21]

and endocytosis of TbAQP2 important for pentamidine transport. However, the intracellular

and surface trafficking pathways of AQPs in trypanosomes have not been elucidated. Central

to endocytosis and protein sorting of many surface membrane proteins is ubiquitylation [45],

and ubiquitylation of the type I surface-localised invariant surface glycoproteins 65 and 75

(ISG65 and ISG75) is essential for internalization and degradation in the lysosome [32,46,47].

To determine whether ubiquitylation is involved in trafficking and turnover of polytopic

surface proteins in trypanosomes we addressed whether TbAQP2 is ubiquitylated. We gener-

ated T. brucei cell lines expressing TbAQP2 tagged at the N- (3×HAAQP2) or C-terminus

(AQP23×HA) (Fig 1A and 1B) using an aqp-null cell line [19] as a chassis to prevent heterolo-

gous interaction with endogenous AQPs. The hemagglutinin (HA) tag was selected as it lacks

lysine residues (as opposed to more bulky tags such as GFP) and therefore is incapable of

becoming ubiquitylated itself. Both constructs co-localized with ISG75 at the posterior end

of the cell, consistent with the location of native AQP2 at the flagellar pocket (Fig 2A).
3×HAAQP2 is predominantly detected as two forms by immunoblotting after SDS-PAGE: a

~38 kDa form, consistent with the monomeric form, and a >120 kDa form, likely a homote-

tramer (Fig 2B, lower panel), as previously reported for AQPs from other species [15,48–50].

In sharp contrast AQP23×HA was detected as two main species of ~35 kDa and ~38 kDa, likely

representing the products of two alternative translation start sites or post-translational modifi-

cation e.g. glycosylation and phosphorylation [51–58], with no tetrameric form detected (Fig

2B, lower panel). However, under native conditions, both constructs organized as high molec-

ular weight complexes of ~480 kDa, consistent with a tetramer of tetramers (4x4) conforma-

tion under native conditions (Fig 2B, upper panel).

Whereas 3×HAAQP2 is readily detectable as a tetramer, even under harsh conditions,

AQP23×HA is comparatively less stable as the tetrameric form (Fig 2B), likely indicating inter-

ference by the C-terminal HA tag to oligomerization and/or tetramer stability. To determine

the glycerol transport capacity of these proteins, we inhibited the activity of the trypanosome

alternative oxidase (TAO) with salicylhydroxamic acid (SHAM) [20]. Inhibition of TAO leads

to increased intracellular glycerol, building up to toxic levels that can only be prevented by

export via a glycerol transporter such as AQP. Therefore, the absence of functional AQPs ren-

ders cells highly susceptible to SHAM. Consistent with stability of the AQP23xHA oligomeric

form, expression of the 3×HAAQP2 construct in the aqp-null background restored sensitivity to

pentamidine and glycerol transport comparable to wild type cells, whereas AQP23×HA only

partly rescued these phenotypes (Fig 2C and S1 Fig). Both 3×HAAQP2 and AQP23×HA have

moderately long half-lives (>4h) (Fig 2D) indicating that impaired transport activity of
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AQP23xHA is unlikely due to altered turnover or structure. Therefore, although introduction of

HA epitopes to either terminus does not alter localization, only the N-terminal tagged form

assembles stable oligomeric structures and fully functional TbAQP2. Therefore, we selected to

focus on 3xHAAQP2.

TbAQP2 is ubiquitylated and degraded by the lysosome

Next, we sought evidence that TbAQP2 is ubiquitylated. Cycles of protein ubiquitylation and

deubiquitylation are important for controlling the cell surface composition of trypanosomes

[24,32,59]. Both proteasome-dependent and lysosome-mediated protein degradation are gen-

erally initiated by covalent attachment of one or more ubiquitin moieties to a substrate protein

[60]. We rationalized that inhibiting these degradative systems would increase overall abun-

dance of ubiquitylated intermediates.

We observed high molecular weight adducts when cells expressing 3×HAAQP2 were treated

with either ammonium chloride (lysosomal activity inhibitor) or MG132 (proteasome inhibi-

tor) (Fig 3A), likely representing ubiquitylated intermediates en route to degradation. Subse-

quent western blotting identified a predominant band of ~45–50 kDa reactive to anti-

ubiquitin antibody upon immunoprecipitation with anti-HA magnetic beads, consistent with

the addition of ubiquitin (~9 kDa) to TbAQP2 (~38 kDa for unmodified protein) (Fig 3B). To

corroborate these results, we performed an affinity isolation using a commercial ubiquitin

binding domain (UBD) resin followed by western blotting with an anti-HA antibody. This

revealed unmodified monomer together with high molecular weight adducts, likely represent-

ing TbAQP2 with various numbers of ubiquitin conjugates; this latter clearly represents a

small fraction of total AQP2 expressed in these cells (Fig 3C). Interestingly, we noted a band of

around ~45 kDa, likely corresponding to monoubiquitylated TbAQP2 (Fig 3C). Collectively,

these results indicate that TbAQP2 is modified by ubiquitin in the bloodstream form of T.

brucei.
Next we sought to determine the mechanisms by which TbAQP2 is degraded. Imaging sug-

gested that TbAQP2 is predominantly located at the flagellar pocket together with ISG75, but a

proportion is also in close proximity to early endosomes (positive for Rab5A and Rab5B) but

less so for recycling endosomes (Rab11) (Fig 4A) suggesting transit of TbAQP2 through early

endosomes. Moreover, TbAQP2 displayed an apparent co-localisation with p67, a lysosomal

marker, suggesting that TbAQP2 is delivered to the lysosome via endocytosis (Fig 4A). Similar

observations were made with cells expressing AQP23×HA (S2 Fig), once more indicating that

the C-terminal tag does not impair trafficking but rather hinders oligomerisation. Further,

pulse-chase analysis showed that ISG75 has a half-life of ~3.6 h, consistent with earlier studies

[32,46,47], whereas TbAQP2 displays bimodal behaviour with approximately 50% rapidly

turned over in <1 h, while the remaining fraction is more stable, with a half-life of ~6 h (Fig

Fig 2. Characterisation of tagged TbAQP2. A) Fluorescence microscopy of T. brucei 2T1 cells expressing tetracycline-regulated N- or C-terminal tagged AQP2

(3xHAAQP2 or AQP23xHA, respectively, in yellow). These proteins localise similar to ISG75 (magenta) at the flagellar pocket/endosomes. The triple aqp-null T. brucei 2T1

cells (ΔAQP) were also included as control. Scale bar 5 μm. B) Tet-regulated expression of N- or C-terminal HA-tagged AQP2. Both native-PAGE (upper panel) and

SDS-PAGE (lower panel) αHA blots are shown. α–β tubulin was used as loading control. The presence of the different oligomeric species is indicated in the right-hand

side of the panel. Note the presence of a high molecular weight form under SDS-PAGE in 3xHAAQP2 but not AQP23xHA. The triple aqp-null T. brucei 2T1 cells (ΔAQP)

were also included as control. C) EC50 values for pentamidine (left panel) or salicylhydroxamic acid (SHAM; right panel) with or without 5 mM glycerol following

expression of either 3xHAAQP2 or AQP23xHA. For multiparametric ANOVA, we compared the average values (n = 4 independent replicates) from wild type T. brucei 2T1

cells as reference for pentamidine, or from aqp-null cells for SHAM. � p<0.01, �� p<0.001, ��� p<0.0001 from four independent replicates. D) Left panel; Representative

western blotting (n = 3 independent replicates) from protein turnover assay monitored by cycloheximide (CHX) treatment in T. brucei 2T1 cells expressing either
3xHAAQP2 (upper panel) or AQP23xHA (lower panel). Right panel; Protein quantification from western blotting analysis in left panel for either 3xHAAQP2 (black square)

or AQP23xHA (grey circles). Results are the mean ± standard deviation of three independent experiments (n = 3 independent replicates). The estimated half-life (t1/2) was

calculated based on regression analysis using PRISM.

https://doi.org/10.1371/journal.pntd.0008458.g002
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4B) and, together with partial juxtaposition with Rab11, suggests a possible recycling fraction.

To determine whether TbAQP2 is degraded in the lysosome or the proteasome we treated cells

with bafilomycin A1 (BafA1; inhibitor of the lysosomal v-ATPase) or MG132 (a canonical pro-

teasome inhibitor with broad-range inhibitory capacity against serine proteases and calpain-

like proteases [61–63]). In untreated cells, TbAQP2 was reduced by ~50% after 1 h as expected,

Fig 3. TbAQP2 is ubiquitylated in T. brucei. A) Cells expressing 3xHAAQP2 were treated with either NH4
+Cl (10 mM) or MG132 (25 μM) for

1h prior to harvesting. Cell lysates were resolved in a 4–12% acrylamide gel and detected with anti-HA antibody by western blotting. The

intensity of anti-β tubulin was used as loading control. B) Immunoprecipitation of Δaqp or 3xHAAQP2 cell lysates with anti-HA beads followed

by anti-ubiquitin detection by western blotting. An anti-HA blot was also included to confirm protein expression upon induction with

tetracycline. Anti-β tubulin was used as loading control. ‘�’ indicates the predicted migration poition of a monoubiquitylated 3xHAAQP2. C) As

in (B), but immunoprecipitation conducted using ubiquitin capture matrix and analysed by western blotting (left panel). The total (“T”),

unbound (“Unb.”), wash (“W”), and elution (“E”) fractions were resolved by SDS-PAGE electrophoresis and analysed with anti-HA

immunoblotting (right panel). ‘�’ is as in panel B.

https://doi.org/10.1371/journal.pntd.0008458.g003
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Fig 4. TbAQP2 transits through the endosomal compartment and is efficiently delivered and degraded in the lysosome. A) Cell

lines expressing a tetracycline-regulated copy of 3xHAAQP2 (Alexa Fluor 488; yellow) were co-stained with anti-TbRab5a and anti-
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but in cells treated with BafA1 or MG132, less that 20% of the protein was degraded (Fig 4C).

It is important to note that MG132 can also impair degradation of proteins delivered to the

lysosome as it acts as a broad range inhibitor for lysosome-specific proteases [61–63]. Overall,

these data indicate that TbAQP2 is ubiquitylated and delivered to the lysosome for degrada-

tion, albeit with a pool of longer-lived protein that may constitute a recycling population.

Intracellular N-terminal lysine residues are essential for oligomerisation

and channel function of TbAQP2

Predictions of TbAQP2 topology [64] suggested cytosolic localisations for both N- and C-ter-

mini, as is known for the mammalian orthologues (S3 Fig, [14,65]). AQP2 has five lysine resi-

dues that are exposed to the cytosol, at positions 19, 45, 54, 147, and 234 (Fig 1B). To better

understand the potential ubiquitylation sites in TbAQP2, we used UbPred (http://www.

ubpred.org) [66] to predict lysine residues as candidate ubiquitin acceptors. UbPred suggested

that lysine residues in position 19, 45, and 54 are potential ubiquitylation sites in TbAQP2,

with prediction scores of 0.65, 0.73, and 0.88, respectively. All three residues are located within

the N-terminal cytoplasmic region of AQP2 (Fig 1B).

To dissect the contributions of these residues to TbAQP2 localisation and function, we gen-

erated a cell line expressing N-terminally tagged AQP2 in which all three lysine residues were

simultaneously mutated (AQP23K>R). Unexpectedly, while the wild-type protein located in the

posterior end of the cell, AQP23K>R was mislocalized (Fig 5A) and failed to restore pentami-

dine sensitivity or glycerol transport (Fig 5B). Furthermore, whereas AQP2WT co-localises

with ISG75 at the posterior end of the cells, AQP23K>R was retained in the endoplasmic reticu-

lum (ER), as suggested by co-localisation with the ER marker TbBiP (Fig 5C). Blue native-

PAGE indicated that whereas AQP2WT forms two high molecular weight complexes (~480

kDa and ~120 kDa), AQP23K>R did not oligomerise (Fig 5D and S4 Fig). Moreover,

AQP23K>R is highly unstable and turned over faster than AQP2WT and in an MG-132 selective

manner (Fig 5E). We conclude that K19, K45 and K54 are essential for TbAQP2 folding and/

or assembly and hence anterograde trafficking and that their replacement by arginine triggers

entry into an ER-associated degradative (ERAD) pathway [62,67,68].

Site-directed mutation of cytoplasmic lysine residues of TbAQP2 leads to

protein instability

To determine whether the effects observed for AQP23K>R could be attributed to a single lysine

residue, we generated a construct in which all cytoplasmic lysine residues were mutagenized to

arginine (AQP25K>R) (Fig 1B). Using this construct as a template, we reverted each lysine

individually using site-directed mutagenesis, generating cell lines expressing N-terminally

tagged mutant TbAQP2 with only one lysine residue reinstated (AQP2R19K, AQP2R45K, and

AQP2R54K). None of these mutants formed oligomers (S4A and S4B Fig) but could be

TbRab5b (early endosomes), anti-TbRab11 (recycling endosomes), and anti-p67 (lysosome). All endosomal and lysosomal markers

were labelled with secondary antibodies coupled to Alexa Fluor 568 (magenta). DAPI (cyan) was used to label the nucleus and

kinetoplast. Scale bars 5 μm. A schematic depiction of the results from confocal microscopy is included in the right panel, generated

with BioRender. B) Left panel; Protein turnover was monitored by cycloheximide (CHX) treatment. Cells were harvested at various

times and the protein level monitored by immunoblotting. ISG75 was included as a control. Right panel; Quantification for ISG75

and 3xHAAQP2. Results are the mean ± standard deviation of three independent experiments. C) Upper panel; As in (B), but cells

were untreated or exposed to 100 nM of bafilomycin A1 (BafA1), or to 25 μM of MG132 for 1 h prior to harvesting. Cell lysates were

resolved by SDS-PAGE followed by western immunoblotting using anti-HA antibody. Lower panel; Quantification from three

independent experiments—dotted line represents 100% (signal at 0h). Data presented as mean ± standard deviation (n = 3

independent replicates). Statistical analysis was conducted using t test; � p<0.01 and the signal from untreated cells at 1 h as reference.

https://doi.org/10.1371/journal.pntd.0008458.g004
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detected as monomers by western blotting (S4C Fig.), and all were retained in the ER, as dem-

onstrated by co-localisation with TbBiP (Fig 6A and S4D Fig). Moreover, AQP25K>R,

AQP2R19K, AQP2R45K, and AQP2R54K turn over faster than AQP2WT and are stabilised by

MG-132 (Fig 6B and Table 1), consistent with the absence of detection by BN-PAGE western

blotting and the lack of sensitivity to pentamidine or glycerol transport observed in these

mutants (Fig 6C). Similar results were obtained with AQP2R234K (S4F Fig). K234 is located

within the TM4-TMD5 loop, an important feature of TbAPQ2 as this loop is predicted to

interact with the TM4-TM5 loop of the neighbouring subunit to create a large oligomerization

interface (S4G Fig, left panel).

Molecular dynamics (MD) simulations of TbAQ2WT and TbAQ2K147R/K234R suggest that

the K234R mutation will likely have a notable effect on the position of the TM4-TM5 loop,

hampering oligomerization (S4G Fig). It is important to note that we failed to successfully

express and detect AQP2R147K despite multiple independent transfections (S4C Fig). Residue

147 is located between TMD4 and TMD5, potentially indicating that mutation of this residue

leads to a far more unstable protein than the other constructs, and in good agreement with the

MD simulations. In TbAQP2WT, K147 is predicted to interact with Y151 and N70 on TMD1

and maintain the TMD3-TMD1 interface (S4G Fig, right panel). On the other hand, simula-

tions of TbAQP2K147R/K234R showed a significant conformational change of TMD1 and TMD3

as a result of establishment of a salt bridge between R234 and D73 on TMD1. This conforma-

tional change on TMD1 would impact both the conformation of the N-terminal tail and the

dimerization interface with TMD6 from the neighbouring subunit, providing a rationale for

the instability observed in this mutant. Consistent with a lack of oligomerization and rapid

turnover, all of these constructs failed to restore pentamidine sensitivity or glycerol transport

(Fig 6C and Table 1).

Chimerization of TbAQP2 impairs stability, localization and function

T. brucei possesses three AQP paralogues [20,22]. Of these, TbAQP2 and TbAQP3 are tandem

open reading frames located on chromosome 10 and share>70% protein identity [12]. Chi-

merisation of the loci encoding TbAQP2 and TbAQP3 causes resistance to pentamidine and

melarsoprol [27,29,31,65]. Interestingly, although in some cases the selectivity pore is mutated,

many chimeric AQP2/3 alleles do not have altered amino acids in the selectivity pore, but

rather replacement of TMD regions with sequences from TbAQP3 (Fig 1C), [26,29–31].

Moreover, the AQP2/3 chimeras characterised so far display a subcellular localisation resem-

bling TbAQP3 at the plasma membrane, in contrast with an expected flagellar pocket

Fig 5. N-terminal lysine residues in the N-terminal cytoplasmic tail are important for protein stability, oligomerisation, and

anterograde transport. A) Left panel; Structural predictions of 3xHAAQP2 generated with i-Tasser, indicating the three N-terminal

lysine residues (magenta) mutated in AQP23K>R. The 3xHA tag has been omitted for simplicity. Right panel; Fluorescence microscopy

of cells expressing N-terminal HA-tagged wild type AQP2 (AQP2WT) or lysine mutant AQP23K>R. Both proteins are shown in yellow.

DAPI (cyan) was used to label the nucleus (N) and the kinetoplast (K). Scale bars, 5 μm. Western blot of cell lysates upon induction with

tetracycline are also included. B) EC50 values for pentamidine (left panel) and salicylhydroxamic acid (SHAM) with or without 5 mM

glycerol (right panel) following recombinant expression of either AQP2WT or AQP23K>R with a tetracycline-regulated (Tet-on) copy in

T. brucei 2T1 bloodstream forms. Multiparametric ANOVA calculated as for Fig 4 (N = 3 independent replicates). C) Cell lines

expressing AQP2WT or AQP23K>R (Alexa Fluor 488; yellow) were co-stained with anti-BiP (endoplasmic reticulum marker). All

markers were labelled with secondary antibodies coupled to Alexa Fluor 568 (magenta). DAPI (cyan) was used to label the nucleus and

the kinetoplast, as indicated in (A). Scale bars, 5 μm. D) Native-PAGE immunoblot of total cell lysates expressing either AQP2WT or

AQP23K>R. Coomassie blue staining of the same fractions was used as loading control. The triple aqp-null T. brucei 2T1 cells (ΔAQP)

were also included as control. E) Left panel; Protein turnover monitored as in Fig 4 for AQP2WT or AQP23K>R. Cells were either

untreated or treated with 25 μM MG132 for 1 h prior to harvest. Cells were harvested at 0 hours and 2 h post-CHX treatment, and

lysates analysed by immunoblotting. α–β tubulin was used as loading control. Right panel; Protein quantification representing the

mean ± standard deviation (n = 3 independent replicates). Dotted line represents 100% (signal in untreated samples). Statistical analysis

was conducted using the signal from untreated cells at 2 h as reference group. �� p<0.001, ns = not significant, using a t test.

https://doi.org/10.1371/journal.pntd.0008458.g005
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localisation for TbAQP2 (Fig 2A) [27]. However, it is unclear if TbAQP2 chimerisation

impacts additional features beyond subcellular localisation.

We generated cell lines expressing tetracycline-regulated N-terminal tagged TbAQP1,

TbAQP2, TbAQP3 and the chimeric AQP2/3 40AT (40AT) (Fig 1C), isolated from trypano-

somes from relapse patients in the DRC [29]. One of the main structural features of this chi-

mera is replacement of the sixth trans-membrane and C-terminus of TbAQP2 with the

corresponding sequence of TbAQP3 (Fig 1C) [29]. Additionally, to simulate other chimeric

AQP2/3 proteins identified in laboratory strains and field isolates, we generated AQP2

mutants where TMD4 (AQP2TMD4) and TMD5 (AQP2TMD5) are individually replaced by the

corresponding TMDs from TbAQP3 (Fig 1C). Apart from the AQP2TMD5 construct, none of

these constructs alter the amino acid composition of the selectivity filter of TbAQP2 (S5 and

S6 Figs). Whereas we readily expressed AQP2TMD4, we failed to obtain positive clones for

AQP2TMD5, despite multiple attempts.

We observed that TbAQP2 colocalised with ISG75, as expected, as well as TbAQP1 which

also localises in close proximity to ISG75, whereas the localisation of TbAQP3, AQP2TMD4 and

the clinical chimera 40AT displayed a distinct localisation in proximity with TbBiP (Fig 7A),

Fig 6. Requirement for cytoplasmic-oriented lysine residues for AQP2 stability and trafficking. A) Cell lines expressing a tetracycline-

regulated copy of the constructs mentioned in (A) (Alexa Fluor 488; yellow) were co-stained with either αBiP (ER) or αISG75 (localises to

flagellar pocket/endosome), both stained with secondary antibodies coupled to Alexa Fluor 568 (magenta). DAPI (cyan) was used to label

the nucleus and the kinetoplast. Scale bars, 5 μm. B) Representative western blot (n = 3 independent replicates) of protein turnover

monitored by cycloheximide (CHX) treatment followed by pulse-chase of cells expressing the constructs in (A). Cells were either

untreated or treated with 25 μM MG132 for 1 h prior to harvest. Cells were harvested at 0 hours and 2 h post-CHX treatment and analysed

by immunoblotting. Uninduced controls (“Un.”) were also included. C) EC50 values (average ± standard deviation; n = 3 independent

replicates) of pentamidine (upper panel) and salicylhydroxamic acid (SHAM) with or without 5 mM glycerol (lower panel) following

recombinant expression of either AQP2WT, AQP25K>R, or single arginine-to-lysine AQP2 mutants (AQP2R19K, AQP2R45K, and

AQP2R54K). Statistical test for significance was conducted using a pairwise t test comparison with uninduced cell lines. � p<0.01, ��

p<0.001, ��� p<0.0001.

https://doi.org/10.1371/journal.pntd.0008458.g006

Table 1. Summary of the impact of cytoplasmic lysine mutagenesis on TbAQP2 localisation and function.

Protein Localisation Protein abundance post-

CHX2
Proposed degradation

pathway

EC50 pentamidine

(nM)3 EC50 SHAM

(μM)3
EC50 SHAM + 5 mM

glycerol (μM)3

Untreated + MG132

AQP2WT Flagellar pocket 61.05 ± 3.43% 44.42 ± 13.15% Lysosome 3.29 1.96 1.16
1AQP2R19K Endoplasmic

reticulum

14.42 ± 9.5% 16.11 ± 7.1% ERAD1 51.18 1.92 1.12

AQP2R45K Endoplasmic

reticulum

1.3 ± 0.93% 34.3 ± 4.65% ERAD 43.16 1.99 2.36

AQP2R54K Endoplasmic

reticulum

10.84 ± 0.5% 41.05 ± 12.5% ERAD 43.10 2.10 2.38

AQP2R234K Endoplasmic

reticulum

7.67 ± 1.9% 24.91 ± 5.12% ERAD 39.95 1.28 2.34

AQP23K>R Endoplasmic

reticulum

5.16 ± 0.62% 46.18 ± 5.95% ERAD 27.20 10.10 10.14

AQP25K>R Endoplasmic

reticulum

16.8 ± 6.2% 37.5 ± 9.5% ERAD 41.98 1.34 1.25

1AQP2R19K did not show a significant accumulation upon MG132 treatment, but co-localized with TbBiP, indicating probable ERAD-mediated turnover.
2Protein abundance was calculated 2h post-treatment with cycloheximide (CHX) and expressed as percent of protein abundance compared to protein signal before

treatment (“time 0h”).
3Estimated EC50 values from cells induced with tetracycline, 1 μg/ml for 24h.

https://doi.org/10.1371/journal.pntd.0008458.t001
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which is not consistent with the previously proposed localisation of TbAQP3 and 40AT

[13,22]. Confocal analysis revealed that whereas TbAQP1 and TbAQP2 are in close proximity

to TbISG75 in two different focal planes, the bulk of the signal for TbAQP3 is detected in

lower focal planes likely to be associated with the ER and the nucleus (Fig 7B). Our results

indicate that TbAQP1 and TbAQP2 are likely to be delivered to the flagellar pocket, whereas

the TbAQP3 seems to be largely retained inside the cell. Western blotting showed that under

reducing conditions, all these constructs are readily detected as monomers of ~35–38 kDa (Fig

8A, right-hand panel). Under native conditions, both TbAQP1 and TbAQP2 can be readily

detected as n-dodecyl β-D-maltoside (DDM)-soluble forms of ~480 kDa species, consistent

with a 4x4 quaternary structure, whereas we failed to observe such complexes for TbAQP3,

40AT, and AQP2TMD4 (Fig 8B). TbAQP3, AQP2TMD4 and 40AT are turned over more rapidly

(<1 h) than TbAQP1 and TbAQP2 (Fig 8D and Table 2), explaining the lack of glycerol trans-

port in cells expressing these constructs (Fig 8C).

The localisation of TbAQP3 and the chimeric AQP2-3 proteins is reminiscent of the subcel-

lular localization observed in the lysine-to-arginine TbAQP2 mutants. Based on these observa-

tions, we hypothesised that these constructs are likely to be retained in the ER, at least to a level

comparable to that of the lysine-to-arginine TbAQP2 mutants. We observed that whereas

TbAQP1 and TbAQP2 show poor co-localisation with TbBiP, the signal of TbAQP3 and 40AT

partly co-localised with this ER marker, suggesting some degree of ER retention (Fig 7A).

Moreover, TbAQP3 and 40AT turnover was faster than TbAQP1 and TbAQP2 and was signif-

icantly impaired in the presence MG132, but not bafilomycin A1(Fig 7B), indicating that these

constructs are retained and degraded in the ER/proteasome and not in the lysosome, as

observed for TbAQP2.

Discussion

Aquaporins are present throughout prokaryotes and eukaryotes [14–16] and have conserved

topology and quaternary structure. AQPs form homotetrameric complexes to transport water

and low molecular weight solutes [14–16]. Independent expansions of AQP paralogues have

served to diversify AQP function, and in mammals and Leishmania major both ubiquitylation

and phosphorylation are important in modulating turnover and hence activity [69–74]. Signif-

icantly, the three trypanosome AQP paralogs derive from a single ancestral gene shared with

Leishmania spp., and thus relative functions of paralogs are likely differentially distributed

between major lineages. Despite clear clinical importance, little is known concerning AQP

trafficking and higher order assembly in trypanosomes and specifically the impact of muta-

tions on these biochemical properties. We found that TbAQP2 assembles into high molecular

weight complexes that potentially resemble the quasi-arrays described for HsAQP4 [75–79].

Oligomerization correlates with bidirectional glycerol flow but also pentamidine sensitivity as

C-terminal tagged forms form oligomers with low efficiency and have poor transport activity.

Fig 7. Differential turnover rate of the repertoire of AQPs in the bloodstream form of T. brucei. A) Cell lines expressing N-terminal HA-tagged

TbAQP1, TbAQP2, TbAQP3, field-isolate chimeric AQP2/3 (40AT) (Alexa Fluor 488; yellow) co-stained with the endoplasmic reticulum marker anti-

BiP (magenta). DAPI (cyan) was used to label the nucleus and the kinetoplast. Scale bars, 5 μm. B) Three different confocal planes are shown for 2T1 cells

expression TbAQP1, TbAQP2, or TbAQP3. The planes are defined from “Bottom” (far from the flagellar pocket) to “Top” (close to the flagellar pocket).

Note a change in DAPI intensity as the images progress through the different planes. TbAQPs are denoted in yellow, DAPI in cyan, and TbISG75 in

magenta. Scale bar, 10 μm. C) Upper panel; Representative western blot (n = 3 independent replicates) of protein turnover monitored by cycloheximide

(CHX) treatment followed by pulse-chase assay. Cells were either untreated or treated with 100 nM of Bafilomycin A1 (BafA1) or 25 μM of MG132 for 1

h prior to harvest. Cells were harvested at 0 hours and 2 h post-CHX treatment and analysed by immunoblotting. Lower panel; Protein quantification

representing the mean ± standard deviation of three independent experiments (n = 3 independent replicates). Statistical analysis was conducted using the

signal from untreated cells at 2 h post-CHX treatment as reference group. � p<0.01, �� p<0.001, ns = not significant, using a t-test.

https://doi.org/10.1371/journal.pntd.0008458.g007
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Furthermore, TbAQP2 is ubiquitylated and targeted to the lysosome, homologous to mamma-

lian AQPs [70].

Pentamidine is thought to be taken up via translocation by and/or endocytosis of TbAQP2

[21,65]. If endocytosis were the sole route, and assuming that lysosomal delivery is required, a

faster turnover rate than ~1 h would be necessary to achieve the intracellular pentamidine lev-

els observed, i.e. ~16 pmol pentamidine/107 cells per hour [80]. Neither pentamidine nor mel-

arsoprol sensitivity requires an obvious lysosomal transporter, suggesting that channel-

mediated transport is required, regardless of any endocytic contribution. However, the intrin-

sic instability of several tagged TbAQP2 mutants precluded detailed dissection of uptake path-

ways as all of the lysine to arginine mutations led to ER retention [62,68]. As specific mutation

of selectivity pore residues does not alter localisation to the flagellar pocket, residues elsewhere

are therefore implicated as important for efficient folding.

All T. brucei AQP paralogs are predicted as topologically similar, but nevertheless possess

distinct properties and subcellular localisations [12,17–22,81]. TbAQP2 is essential for pent-

amidine and melarsoprol uptake [12], while TbAQP3 is associated with susceptibility to anti-

monial compounds including sodium stibogluconate [71], indicating transport specificity.

Trypanosomes from patients following melarsoprol treatment failure possess a mutated

AQP2/3 locus [19,28,29,65,82], with single nucleotide polymorphisms, AQP2 deletions and

several fusions replacing TbAQP2 TMD4, 5 or 6 with TbAQP3 sequences, in most cases with-

out impacting the NPA/NPA and WGYR selectivity pore motifs [29–31]. Several chimeras

have aberrant subcellular localisations [19,28,29,65,82], indicating that the selectivity filters are

comparatively unimportant for targeting. Consistent with this is that both TbAQP1 and

TbAQP2 assemble into higher order complexes but TbAQP3 apparently does so less effi-

ciently. Similarly, TbAQP1 and TbAPQ2 have a long half-life (t1/2 >4 h) and restricted subcel-

lular localisation around the flagellar pocket, whereas TbAQP3 is comparatively short-lived

(t1/2 ~1 h) and localises mainly within the cell, suggesting a connection between oligomerisa-

tion, stability, subcellular localisation and transport activity [75,77–79]. Furthermore, replace-

ment of TMD4 or 6 in TbAQP2 by TbAQP3 sequences (we were unable to generate TMD5

Fig 8. Chimerisation of TbAQP2 leads to mislocalisation, reduction in glycerol transport activity and rapid

turnover. A) Cell lines expressing N-terminal HA-tagged TbAQP1, TbAQP2, TbAQP3, field-isolate chimeric AQP2/3

(40AT) or a single TMD mutant (AQP2TMD4) (Alexa Fluor 488; yellow) co-stained with anti-ISG75 (magenta). DAPI

(cyan) was used to label the nucleus and the kinetoplast. Scale bars 5 μm. Western immunoblotting analysis from lysates

of cells expressing these constructs are also included. Anti-β tubulin was used as loading control. B) BN-PAGE

immunoblot of total cell lysates expressing the constructs in (A). Coomassie blue staining of the same fractions was used

as loading control. C) EC50 values (average ± standard deviation; n = 3) for salicylhydroxamic acid (SHAM) with or

without 5 mM glycerol following recombinant expression of the constructs in (A). D) Left panel; Representative western

blotting (n = 3 independent replicates) analysis of protein turnover monitored by cycloheximide (CHX) treatment

followed by pulse-chase of cells expressing the constructs in (A). Right panel; Protein quantification representing the

mean ± standard deviation of three independent experiments. Dotted line represents 50% of protein abundance. Data

presented as mean ± standard deviation (n = 3 independent replicates).

https://doi.org/10.1371/journal.pntd.0008458.g008

Table 2. Summary of the impact of chimerisation on TbAQP2 localisation and function.

Protein Sequence source Localisation Half-life (h)

EC50 pentamidine (nM)1

EC50 SHAM (μM)1 EC50 SHAM + 5 mM glycerol (μM)1

TbAQP1 Wild type Flagellar base 4.34 10.08 3.02 1.45

TbAQP2 Wild type Flagellar pocket 4.83 3.29 1.96 1.16

TbAQP3 Wild type Plasma membrane 1.15 10.23 1.28 1.14

40AT Chimera Plasma membrane 1.64 10.34 1.39 1.12

AQP2TMD4 Chimera Plasma membrane <1h 10.24 0.74 0.64

1Estimated EC50 values from cells induced with tetracycline, 1μg/ml for 24h.

https://doi.org/10.1371/journal.pntd.0008458.t002
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chimeras), as observed in clinically relevant chimeric AQP2-3, led to impaired oligomerisa-

tion, ER-retention and decreased stability, strengthening the correlation between oligomerisa-

tion, localisation and function.

In summary, we propose that pentamidine uptake depends upon the structural organisa-

tion of TbAQP2 and that channel activity is essential. Furthermore, TbAQP2 is highly sensitive

to mutation and/or chimerisation, which results in failure to correctly fold and ER-retention.

This mechanism most likely accounts for many instances of clinically observed pentamidine

and melarsoprol resistance.

Supporting information

S1 Fig. Characterisation of T. brucei 2T1 cell lines expressing N- or C-terminal tagged

TbAQP2. A) Proliferation was estimated over a period of four days in vitro in the presence or

absence of tetracycline for 3xHAAQP2 (middle panel) or AQP23xHA (right panel) cell lines. T.

brucei 2T1 wild type aqp-null cell lines (left panel) were included as the parental strain. B)

Dose-response curves for pentamidine from T. brucei 2T1 wild type of aqp-null cell lines (left

panel), 3xHAAQP2 (middle panel), and AQP23xHA (right panel). C) Dose-response curves for

SHAM (left panels) or SHAM plus 5 mM glycerol (right panels), with the same lines as in pan-

els A and B.

(AI)

S2 Fig. 3xHA C-terminally tagged AQP2 transits through endosomes and is delivered into

the lysosome. Cell lines expressing a tetracycline-regulated copy of AQP23xHA (Alexa Fluor

488; yellow) were co-stained with anti-TbRab5a and anti-TbRab5b (early endosomes), anti-

TbRab11 (recycling endosomes) and anti-p67 (lysosome). All endosomal and lysosomal mark-

ers were labelled with secondary antibodies coupled to Alexa Fluor 568 (magenta). DAPI

(cyan) was used to label the nucleus and kinetoplast. Scale bars, 5 μm.

(AI)

S3 Fig. Topological predictions of kinetoplastid aquaglyceroporins. TbAQP1, TbAQP2,

TbAQP3, a field-isolated chimera AQP2/3 (40AT) and a single TMD mutant (AQP2TMD4) are

predicted to have both N- and C-termini facing the cytoplasm and six TMD. Predictions were

generated using TMHMM (v2.0) [64].

(AI)

S4 Fig. Characterisation of T. brucei 2T1 cell lines expressing N-terminal tagged

TbAQP2R234K mutant. A) Blue native-PAGE immunoblot of total cell lysates expressing

either TbAQP2 (AQP2WT), N-terminal lysine-to-arginine mutant (AQP23K>R), all lysine-to-

arginine mutant (AQP25K>R) and individual arginine-to-lysine mutants (AQP2R19K,

AQP2R45K, and AQP2R54K). Coomassie blue staining of the same lysates was used as loading

control. B) Blue native-PAGE immunoblot of total cell lysates expressing the constructs in (A).

Coomassie blue of the same fractions was used as loading control. C) Cell lysates from differ-

ent lysine-to-arginine mutants shown in (A) and (B) were resolved under denaturing condi-

tions (SDS-PAGE) in a 4–12% acrylamide gel and detected with anti-HA antibody by western

blotting. The signal of β tubulin was used as loading control. Note the lack of signal from the

AQP2R147K mutant. D) Cell lines expressing a tetracycline-regulated copy of wild type

TbAQP2 (AQP2WT), N-terminal lysine-to-arginine mutant (AQP23K>R), all lysine-to-arginine

mutant (AQP25K>R) or individual arginine-to-lysine mutants (AQP2R234K) (Alexa Fluor 488;

yellow) were co-stained with anti-TbBiP (endoplasmic reticulum) coupled to Alexa Fluor 568

(magenta). DAPI (cyan) was used to label the nucleus and the kinetoplast. Scale bars 5 μm. D)

Protein turnover was monitored by cycloheximide (CHX) treatment followed by chase and
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western blotting. Prior to treatment, cells were either untreated or treated with 25 μM MG132

for 1 hour. Cells were harvested at 0 and 2 hours post-CHX treatment and cell lysates analyses

by western immunoblotting. Quantification represents mean ± standard deviation (n = 3 inde-

pendent replicates), and dotted line represents protein abundance at time 0h. Statistical analy-

sis was conducted using untreated cells at 2 hours as reference group. �� p<0.001, ns = not

significant, using a t-test. EC50 values for pentamidine (E) and salicylhydroxamic acid

(SHAM) (F) with or without 5 mM glycerol following expression of AQP2R234K. Statistical

analysis was conducted using untreated cells as reference group. �� p<0.001, ns = not signifi-

cant, using a t test. Note that this is an extended version of Fig 6A and 6B, and the full panel

included for comparison. G) Left panel; View from the cytoplasmic face The TMD4-TMD5

loops in each monomer are highlighted. K234 is shown as spheres. Right panel; Structural

overview of T. brucei AQP2 homology model. K147 and K234 are shown as spheres. The

expanded view of the conformational change observed during TMD simulations on TMD1

and TMD3 as a result of the K147R mutation. Wild type TbAQP2 is shown in green. TbAQP2

displaying the K147R and K234R mutations is shown in light orange.

(AI)

S5 Fig. Protein sequence alignment of wild-type TbAQP2, TbAQP3, and the chimeric

AQP2-3 detected in relapsing sleeping sickness patients from the Democratic Republic of

Congo. The sequence alignment was conducted using Jalview and MUSCLE for multiple

sequence alignment. The NPA/NPS selectivity filter is indicated with red boxes, and predicted

trans-membrane domain (TMDs) spans are also indicated.

(AI)

S6 Fig. Structural details of TbAQP2 chimerisation and selectivity filters. 3D structural pre-

dictions of N-terminal tagged TbAQP1 (cyan), TbAQP2 (magenta), TbAQP3 (green) and the

chimeric TbAQP2/3 40AT and AQP2TMD4, with the corresponding domain swap colour-

coded. Structures were calculated with i-Tasser. The 3xHA-tag is omitted for simplicity.

Details of the selectivity pore for each of these proteins (12Å) are also included. For TbAQP2,

AQP2TMD4 and 40AT constructs, the selectivity filter is composed of the “NSA/NPS” motif,

whereas TbAQP1 and TbAQP3 contain a “NPA/NPA” motif.

(AI)
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