15 research outputs found

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Bone density and body composition in newly licenced professional jockeys

    No full text
    Summary The primary objective is the description of bone mineral density (BMD) and body composition in newly licensed jockeys. One in three male, flat jockeys has a very low bone mineral density. Further research is needed to assess the short-term risk of fractures and long-term health implications of these findings. Introduction Describe bone mineral density (BMD) and body composition in entry-level male and female, flat and jump jockeys in Great Britain. Methods Data was collected on jockeys applying for a professional jockey license between 2013 and 2015. Areal BMD at the spine, femoral neck (FN), total hip and body composition were assessed by dual-energy X-ray absorptiometry (DXA) scan. We examined differences between BMD and body composition by gender and race type (flat or jump). Volumetric bone mineral apparent density (BMAD) of the spine and FN was also calculated to account for group differences in bone size. Results Seventy-nine male flat jockeys (age 18.5 ± 1.9, BMI 19.0 ± 1.4), 69 male jump (age 20.7 ± 2.0, BMI 20.6 ± 1.3) and 37 female flat jockeys (age 19.3 ± 2.0, BMI 20.8 ± 1.7) took part in this study. Spine BMD Z-scores ≤−2 for male flat, male jump and female flat jockeys were 29, 13 and 2.7%, respectively. Spine BMD was lower in male than female flat jockeys (p<0.001). All BMD scores were lower in male flat compared to male jump jockeys (p<0.001). Body fat percent (BF %) was lower in male flat jockeys compared to male jump and female flat jockeys (p<0.05). Lean mass index (LMI) was lower in male flat compared to male jump jockeys (p<0.001). Conclusions Male flat jockeys had a significantly lower BMD, LMI and BF% compared to jump jockeys and female flat jockeys. Male flat jockeys had lower spine BMD scores than females. Individual bone maturation may influence these findings. Further investigation into the relevance of low BMD and altered body composition on jockey health is required

    Prenatal maternal stress effects on the development of primate social behavior

    No full text
    corecore