13 research outputs found

    Dose reduction to organs at risk with deep-inspiration breath-hold during right breast radiotherapy: a treatment planning study

    Get PDF
    BACKGROUND: The addition of regional nodal radiation (RNI) to whole breast irradiation for high risk breast cancer improves metastases free survival and new data suggests it contributes additional benefit to overall survival. Deep inspiration breath hold (DIBH) has been shown to reduce cardiac and pulmonary dose in the context of left-sided disease treated with or without RNI, yet few studies have investigated its utility for right-breast cancer. This study investigates the potential advantages of DIBH in local and locoregional radiotherapy for right-sided breast cancer. METHODS: Free-breathing (FB) and DIBH computed tomography datasets were obtained from twenty patients who previously underwent radiotherapy for left-sided breast cancer. Ten patients were retrospectively planned for whole right breast only irradiation and ten patients were planned for irradiation to the whole breast plus ipsilateral supra-clavicular (SC) nodes, with and without irradiation of the ipsilateral internal mammary nodes (IMN). Dose-volume metrics for the clinical target volume, lungs, heart, left anterior descending artery, right coronary artery (RCA) and liver were recorded. Differences between FB and DIBH plans were analysed using Wilcoxon signed-rank tests, with P < 0.05 considered statistically significant. RESULTS: DIBH increased the average total lung volume compared to FB in both breast only and breast plus RNI cohorts (P = 0.001). For the breast only group, there was no significant improvement in any ipsilateral lung dose-volume metric between FB and DIBH. However, for the breast plus RNI group, there was an improvement in ipsilateral lung mean dose (18.9 ± 3.2 Gy to 15.9 ± 2.3 Gy, P = 0.002) and V20Gy (45.3 ± 13.3% to 32.9 ± 9.4%, P = 0.002). In addition, DIBH significantly reduced the maximum dose to the RCA for RNI (11.6 ± 7.2 Gy to 5.6 ± 2.9 Gy, P = 0.03). Significant reductions in the liver V20Gy and maximum dose were observed in all cohorts during DIBH compared to FB. CONCLUSIONS: DIBH is a promising approach for right-breast radiotherapy with considerable sparing of normal tissue, particularly when the ipsilateral IMNs are also irradiated

    Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model

    Get PDF
    Synchrotron radiation can facilitate novel radiation therapy modalities such as microbeam radiation therapy (MRT) and high dose-rate synchrotron broad-beam radiation therapy (SBBR). Both of these modalities have unique physical properties that could be exploited for an improved therapeutic effect. While pre-clinical studies report promising normal tissue sparing phenomena, systematic toxicity data are still required. Our objective was to characterise the toxicity of SBBR and MRT and to calculate equivalent doses of conventional radiation therapy (CRT). A dose-escalation study was performed on C57BLJ/6 mice using total body and partial body irradiations. Dose-response curves and TD50 values were subsequently calculated using PROBIT analysis. For SBBR at dose-rates of 37 to 41 Gy/s, we found no evidence of a normal tissue sparing effect relative to CRT. Our findings also show that the MRT valley dose, rather than the peak dose, best correlates with CRT doses for acute toxicity. Importantly, longer-term weight tracking of irradiated animals revealed more pronounced growth impairment following MRT compared to both SBBR and CRT. Overall, this study provides the first in vivo dose-equivalence data between MRT, SBBR and CRT and presents systematic toxicity data for a range of organs that can be used as a reference point for future pre-clinical work

    Dose-escalated radiotherapy to 82 Gy for prostate cancer following insertion of a peri-rectal hydrogel spacer: 3-year outcomes from a phase II trial.

    No full text
    BACKGROUND: Dose-escalation to above 80 Gy during external beam radiotherapy for localised prostate cancer leads to improved oncological outcomes but also substantially increased rectal toxicity. The aim of this study was to demonstrate the safety and efficacy of escalating the dose to 82 Gy following insertion of a peri-rectal hydrogel spacer (HS) prior to radiotherapy. METHODS: This was a single arm, open-label, prospective study of men with localised prostate cancer who were prescribed a course of intensity modulated radiotherapy escalated to 82 Gy in 2 Gy fractions following insertion of the SpaceOAR™ HS (Boston Scientific, Marlborough, MA). Patients were prescribed a standard course of 78 Gy in 2 Gy fractions where rectal dose constraints could not be met for the 82 Gy plan. The co-primary endpoints were the rate of grade 3 gastrointestinal (GI) and genitourinary (GU) adverse events (CTCAE, v4), and patient-reported quality of life (QoL) (EORTC QLQ-C30 and PR25 modules), up to 37.5 months post-treatment. RESULTS: Seventy patients received treatment on the study, with 64 (91.4%) receiving an 82 Gy treatment course. The median follow-up time post-treatment was 37.4 months. The rate of radiotherapy-related grade 3 GI and GU adverse events was 0% and 2.9%, respectively. There were 2 (2.9%) grade 3 adverse events related to insertion of the HS. Only small and transient declines in QoL were observed; there was no clinically or statistically significant decline in QoL beyond 13.5 months and up to 37.5 months post-treatment, compared to baseline. No late RTOG-defined grade ≥ 2 GI toxicity was observed, with no GI toxicity observed in any patient at 37.5 months post-treatment. Nine (12.9%) patients met criteria for biochemical failure within the follow-up period. CONCLUSIONS: Dose-escalation to 82 Gy, facilitated by use of a hydrogel spacer, is safe and feasible, with minimal toxicity up to 37.5 months post-treatment when compared to rates of rectal toxicity in previous dose-escalation trials up to 80 Gy. Trials with longer follow-up of oncological and functional outcomes are required to robustly demonstrate a sustained widening of the therapeutic window. Trial registration Australian New Zealand Clinical Trials Registry, ACTRN12621000056897 , 22/01/2021. Retrospectively registered

    Fractionated stereotactic body radiotherapy for up to five prostate cancer oligometastases: Interim outcomes of a prospective clinical trial

    Get PDF
    Stereotactic body radiotherapy (SBRT) can delay escalation to systemic treatment in men with oligometastatic prostate cancer (PCa). However, large, prospective studies are still required to evaluate the efficacy of this approach in different patient groups. This is the interim analysis of a prospective, single institution study of men relapsing with up to five synchronous lesions following definitive local treatment for primary PCa. Our aim was to determine the proportion of patients not requiring treatment escalation following SBRT. In total, 199 patients were enrolled to receive fractionated SBRT (50 Gray in 10 fractions) to each visible lesion. Fourteen patients were castration resistant at enrolment. The proportion of patients not requiring treatment escalation 2 years following SBRT was 51.7% (95% CI: 44.1-59.3%). The median length of treatment escalation-free survival over the entire follow-up period was 27.1 months (95% CI; 21.8-29.4 months). Prior androgen deprivation therapy (ADT) predicted a significantly lower rate of freedom from treatment escalation at 2 years compared to no prior ADT (odds ratio = 0.21, 95% CI: 0.08-0.54, p = 0.001). There was no difference in the efficacy of SBRT when treating 4-5 vs. 1-3 initial lesions. A prostate-specific antigen (PSA) decline was induced in 75% of patients, with PSA readings falling to an undetectable level in six patients. No late grade three toxicities were observed. These interim results suggest that SBRT can be used to treat up to five synchronous PCa oligometastases to delay treatment escalation

    Ga-68-PSMA-PET screening and transponder-guided salvage radiotherapy to the prostate bed alone for biochemical recurrence following prostatectomy: interim outcomes of a phase II trial

    No full text
    PURPOSE: To evaluate outcomes for men with biochemically recurrent prostate cancer who were selected for transponder-guided salvage radiotherapy (SRT) to the prostate bed alone by 68Ga-labelled prostate-specific membrane antigen positron emission tomography (68Ga-PSMA-PET). METHODS: This is a single-arm, prospective study of men with a prostate-specific antigen (PSA) level rising to 0.1-2.5 ng/mL following radical prostatectomy. Patients were staged with 68Ga-PSMA-PET and those with a negative finding, or a positive finding localised to the prostate bed, continued to SRT only to the prostate bed alone with real-time target-tracking using electromagnetic transponders. The primary endpoint was freedom from biochemical relapse (FFBR, PSA > 0.2 ng/mL from the post-radiotherapy nadir). Secondary endpoints were time to biochemical relapse, toxicity and patient-reported quality of life (QoL). RESULTS: Ninety-two patients (median PSA of 0.18 ng/ml, IQR 0.12-0.36), were screened with 68Ga-PSMA-PET and metastatic disease was found in 20 (21.7%) patients. Sixty-nine of 72 non-metastatic patients elected to proceed with SRT. At the interim (3-year) analysis, 32 (46.4%) patients (95% CI 34.3-58.8%) were FFBR. The median time to biochemical relapse was 16.1 months. The rate of FFBR was 82.4% for ISUP grade-group 2 patients. Rates of grade 2 or higher gastrointestinal and genitourinary toxicity were 0% and 15.2%, respectively. General health and disease-specific QoL remained stable. CONCLUSION: Pre-SRT 68Ga-PSMA-PET scans detect metastatic disease in a proportion of patients at low PSA levels but fail to improve FFBR. Transponder-guided SRT to the prostate bed alone is associated with a favourable toxicity profile and preserved QoL. TRIAL REGISTRATION NUMBER: ACTRN12615001183572, 03/11/2015, retrospectively registered

    Locomotion and eating behavior changes in Yucatan minipigs after unilateral radio-induced ablation of the caudate nucleus

    Get PDF
    International audienceThe functional roles of the Caudate nucleus (Cd) are well known. Selective Cd lesions can be found in neurological disorders. However, little is known about the dynamics of the behavioral changes during progressive Cd ablation. Current stereotactic radiosurgery technologies allow the progressive ablation of a brain region with limited adverse effects in surrounding normal tissues. This could be of high interest for the study of the modified behavioral functions in relation with the degree of impairment of the brain structures. Using hypofractionated stereotactic radiotherapy combined with synchrotron microbeam radiation, we investigated, during one year after irradiation, the effects of unilateral radio-ablation of the right Cd on the behavior of Yucatan minipigs. The right Cd was irradiated to a minimal dose of 35.5 Gy delivered in three fractions. MRI-based morphological brain integrity and behavioral functions, i.e. locomotion, motivation/hedonism were assessed. We detected a progressive radionecrosis leading to a quasi-total ablation one year after irradiation, with an additional alteration of surrounding areas. Transitory changes in the motivation/hedonism were firstly detected, then on locomotion, suggesting the influence of different compensatory mechanisms depending on the functions related to Cd and possibly some surrounding areas. We concluded that early behavioral changes related to eating functions are relevant markers for the early detection of ongoing lesions occurring in Cd-related neurological disorders
    corecore