139 research outputs found

    Quantum Point Contacts and Coherent Electron Focusing

    Get PDF
    I. Introduction II. Electrons at the Fermi level III. Conductance quantization of a quantum point contact IV. Optical analogue of the conductance quantization V. Classical electron focusing VI. Electron focusing as a transmission problem VII. Coherent electron focusing (Experiment, Skipping orbits and magnetic edge states, Mode-interference and coherent electron focusing) VIII. Other mode-interference phenomenaComment: #3 of a series of 4 legacy reviews on QPC'

    Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome

    Get PDF
    Additional file 3. This file contains all supplementary tables relating to lncRNA identification via the conservation of synteny. Table S3. lncRNAs inferred in one species by the genomic alignment of a transcript assembled with the RNA-seq libraries from a related spdecies. Table S12. Presence of intergenic lncRNAs both in sheep and cattle, in regions of conserved synteny. Table S13. Presence of intergenic lncRNAs both in sheep and goat, in regions of conserved synteny. Table S14. Presence of intergenic lncRNAs both in cattle and goat, in regions of conserved synteny. Table S15. Presence of intergenic lncRNAs both in sheep and humans, in regions of conserved synteny. Table S16. Presence of intergenic lncRNAs both in goat and humans, in regions of conserved synteny. Table S17. Presence of intergenic lncRNAs both in cattle and humans, in regions of conserved synteny. Table S18. High-confidence lncRNA pairs, those conserved across species both sequentially and positionally

    Genetics ignite focus on microglial inflammation in Alzheimer’s disease

    Get PDF
    In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer’s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies.  We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications

    Perspectives on the mesenchymal origin of metastatic cancer

    Full text link
    • 

    corecore