53 research outputs found

    Pattern and Outcome of Chest Injuries at Bugando Medical Centre in Northwestern Tanzania.

    Get PDF
    Chest injuries constitute a continuing challenge to the trauma or general surgeon practicing in developing countries. This study was conducted to outline the etiological spectrum, injury patterns and short term outcome of these injuries in our setting. This was a prospective study involving chest injury patients admitted to Bugando Medical Centre over a six-month period from November 2009 to April 2010 inclusive. A total of 150 chest injury patients were studied. Males outnumbered females by a ratio of 3.8:1. Their ages ranged from 1 to 80 years (mean = 32.17 years). The majority of patients (72.7%) sustained blunt injuries. Road traffic crush was the most common cause of injuries affecting 50.7% of patients. Chest wall wounds, hemothorax and rib fractures were the most common type of injuries accounting for 30.0%, 21.3% and 20.7% respectively. Associated injuries were noted in 56.0% of patients and head/neck (33.3%) and musculoskeletal regions (26.7%) were commonly affected. The majority of patients (55.3%) were treated successfully with non-operative approach. Underwater seal drainage was performed in 39 patients (19.3%). One patient (0.7%) underwent thoracotomy due to hemopericardium. Thirty nine patients (26.0%) had complications of which wound sepsis (14.7%) and complications of long bone fractures (12.0%) were the most common complications. The mean LOS was 13.17 days and mortality rate was 3.3%. Using multivariate logistic regression analysis, associated injuries, the type of injury, trauma scores (ISS, RTS and PTS) were found to be significant predictors of the LOS (P < 0.001), whereas mortality was significantly associated with pre-morbid illness, associated injuries, trauma scores (ISS, RTS and PTS), the need for ICU admission and the presence of complications (P < 0.001). Chest injuries resulting from RTCs remain a major public health problem in this part of Tanzania. Urgent preventive measures targeting at reducing the occurrence of RTCs is necessary to reduce the incidence of chest injuries in this region

    A clinical pathway for community-acquired pneumonia: an observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Six hospitals instituted a voluntary, system-wide, pathway for community acquired pneumonia (CAP). We proposed this study to determine the impact of pathway antibiotics on patient survival, hospital length of stay (LOS), and total hospital cost.</p> <p>Methods</p> <p>Data were collected for adults from six U.S. hospitals with a principal CAP discharge diagnosis code, a chest infiltrate, and medical notes indicative of CAP from 2005-2007. Pathway and non-pathway cohorts were assigned according to antibiotics received within 48 hours of admission. Pathway antibiotics included levofloxacin 750 mg monotherapy or ceftriaxone 1000 mg plus azithromycin 500 mg daily. Multivariable regression models assessed 90-day mortality, hospital LOS, total hospital cost, and total pharmacy cost.</p> <p>Results</p> <p>Overall, 792 patients met study criteria. Of these, 505 (64%) received pathway antibiotics and 287 (36%) received non-pathway antibiotics. Adjusted means and p-values were derived from Least Squares regression models that included Pneumonia Severity Index risk class, patient age, heart failure, chronic obstructive pulmonary disease, and admitting hospital as covariates. After adjustment, patients who received pathway antibiotics experienced lower adjusted 90-day mortality (<it>p </it>= 0.02), shorter mean hospital LOS (3.9 vs. 5.0 days, <it>p </it>< 0.01), lower mean hospital costs (2,485vs.2,485 vs. 3,281, <it>p </it>= 0.02), and similar mean pharmacy costs (356vs.356 vs. 442, <it>p </it>= 0.11).</p> <p>Conclusions</p> <p>Pathway antibiotics were associated with improved patient survival, hospital LOS, and total hospital cost for patients admitted to the hospital with CAP.</p

    Hyponatremia and hospital outcomes among patients with pneumonia: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Community-acquired (CAP) and nosocomial pneumonias contribute substantially to morbidity and hospital resource utilization. Hyponatremia, occurring in >1/4 of patients with CAP, is associated with greater disease severity and worsened outcomes.</p> <p>Methods</p> <p>To explore how hyponatremia is associated with outcomes in hospitalized patients with pneumonia, we analyzed a large administrative database with laboratory component from January 2004 to December 2005. Hyponatremia was defined as at least two [Na<sup>+</sup>] < 135 mEq/L within 24 hours of admission value.</p> <p>Results</p> <p>Of 7,965 patients with pneumonia, 649 (8.1%) with hyponatremia were older (72.4 ± 15.7 vs. 68.0 ± 22.0, p < 0.01), had a higher mean Deyo-Charlson Comorbidity Index Score (1.7 ± 1.7 vs. 1.6 ± 1.6, p = 0.02), and higher rates of ICU (10.0% vs. 6.3%, p < 0.001) and MV (3.9% vs. 2.3%, p = 0.01) in the first 48 hours of hospitalization than patients with normal sodium. Hyponatremia was associated with an increased ICU (6.3 ± 5.6 vs. 5.3 ± 5.1 days, p = 0.07) and hospital lengths of stay (LOS, 7.6 ± 5.3 vs. 7.0 ± 5.2 days, p < 0.001) and a trend toward increased hospital mortality (5.4% vs. 4.0%, p = 0.1). After adjusting for confounders, hyponatremia was associated with an increased risk of ICU (OR 1.58, 95% CI 1.20–2.08), MV (OR 1.75 95% CI 1.13–2.69), and hospital death (OR 1.3, 95% CI 0.90–1.87) and with increases of 0.8 day to ICU and 0.3 day to hospital LOS, and over $1,300 to total hospital costs.</p> <p>Conclusion</p> <p>Hyponatremia is common among hospitalized patients with pneumonia and is associated with worsened clinical and economic outcomes. Studies in this large population are needed to explore whether prompt correction of [Na<sup>+</sup>] may impact these outcomes.</p

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Evaluation of psychological and physiological predictors of fatigue in patients with COPD

    Get PDF
    BACKGROUND: Fatigue in COPD impairs functional status; however there are few studies examining mechanistic pathways of this symptom. The aims of this study are to compare fatigue between COPD patients and healthy age-matched subjects, and to identify predictors of fatigue in COPD. METHODS: Seventy four COPD patients, mean age 69.9 (49-87) yrs, mean (SD) % predicted FEV1 46.5 (20.0) % and FEV1/FVC ratio 0.45 (0.13) and 35 healthy subjects, mean age 67.1 (50-84) yrs completed the Multidimensional Fatigue Inventory (MFI 20). Patients' assessment included Depression (HADS), lung function, BMI, muscle strength, incremental shuttle walk test (ISWT), exercise oxygen saturation (SpO2), Borg breathlessness (CR-10) and exertion (RPE). Serum level of Interleukin 6 (IL-6) was recorded. Differences in MFI 20 between groups were examined and predictors of fatigue identified using logistic regression. RESULTS: Significant differences (p < 0.01) were found between the COPD and healthy subjects for all MFI 20 dimensions. There were significant differences when classified according to GOLD and dyspnoea stages for selected dimensions only. Predictors of General Fatigue were depression, muscle strength and end SpO2 (R2 = .62); of Physical Fatigue: depression, % predicted FEV1, ISWT and age (R2 = .57); Reduced Activity: % predicted FEV1, BMI and depression (R2 = .36); Reduced Motivation: RPE, depression and end SpO2 (R2 = .37) and Mental Fatigue: depression and end SpO2 (R2 = .38). CONCLUSION: All dimensions of fatigue were higher in COPD than healthy aged subjects. Predictive factors differ according to the dimension of fatigue under investigation. COPD-RF is a multi component symptom requiring further consideration
    corecore