737 research outputs found

    A model for transition of 5 '-nuclease domain of DNA polymerase I from inert to active modes

    Get PDF
    Bacteria contain DNA polymerase I (PolI), a single polypeptide chain consisting of similar to 930 residues, possessing DNA-dependent DNA polymerase, 3'-5' proofreading and 5'-3' exonuclease (also known as flap endonuclease) activities. PolI is particularly important in the processing of Okazaki fragments generated during lagging strand replication and must ultimately produce a double-stranded substrate with a nick suitable for DNA ligase to seal. PolI's activities must be highly coordinated both temporally and spatially otherwise uncontrolled 5'-nuclease activity could attack a nick and produce extended gaps leading to potentially lethal double-strand breaks. To investigate the mechanism of how PolI efficiently produces these nicks, we present theoretical studies on the dynamics of two possible scenarios or models. In one the flap DNA substrate can transit from the polymerase active site to the 5'-nuclease active site, with the relative position of the two active sites being kept fixed; while the other is that the 5'-nuclease domain can transit from the inactive mode, with the 5'-nuclease active site distant from the cleavage site on the DNA substrate, to the active mode, where the active site and substrate cleavage site are juxtaposed. The theoretical results based on the former scenario are inconsistent with the available experimental data that indicated that the majority of 5'-nucleolytic processing events are carried out by the same PolI molecule that has just extended the upstream primer terminus. By contrast, the theoretical results on the latter model, which is constructed based on available structural studies, are consistent with the experimental data. We thus conclude that the latter model rather than the former one is reasonable to describe the cooperation of the PolI's polymerase and 5'-3' exonuclease activities. Moreover, predicted results for the latter model are presented

    Decision making and experiences of young adults undergoing presymptomatic genetic testing for familial cancer: A longitudinal grounded theory study

    Get PDF
    Enabling informed choice is an essential component of care when offering young adults presymptomatic testing for a genetic condition. A systematic review on this topic revealed that many young adults grew up with little information regarding their genetic risk and that parents had applied pressure to them during the testing decision-making process. However, none of the studies retrieved were conducted in South European countries. To address this gap, we undertook a qualitative study based on grounded theory to explore the psychosocial implications of presymptomatic testing for hereditary cancer in Italian young adults aged 18-30 years. Interviews were conducted on three occasions: 1 month before counselling, and 2 weeks and 6 months after results. Data were coded and grouped under themes. A total of 42 interviews were conducted. Four themes emerged: knowledge, genetic counselling process, decision making and dealing with test results. Although participants grew up with little or no information about their genetic risk, none expressed regret at having the test at a young age. Pre-test counselling was appreciated as a source of information, rather than support for decision making. Decisions were often made autonomously and sometimes conflicted with parents' wishes. Participants reported no changes in health behaviours after testing. This evidence highlights the need for a comprehensive, longitudinal counselling process with appropriate timing and setting, which supports 'parent-to-offspring' risk communication first and decision making by young adults about presymptomatic testing and risk management afterwards. In conclusion, it is clear that counselling approaches for presymptomatic testing may require modification both for young adults and their parents. © 2017 European Society of Human Genetics

    Complex aetiology of an apparently Mendelian form of Mental Retardation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mental Retardation is a common heterogeneous neurodevelopment condition, which causes are still largely elusive. It has been suggested that half of the phenotypic variation of intelligence is explained by genetic variation. And genetic or inherited factors indeed account for most of the cases of mental retardation with an identifiable cause. However, only a few autosomal genes have been mapped and identified to date. In this report, the genetic causes for an apparently recessive form of mental retardation, in a large nordern swedish pedigree, are investigated.</p> <p>Methods</p> <p>After extensive evaluation of the patients, which ruled out recognizable patterns of malformation and excluded known causes of MR, a comprehensive genome-wide linkage analysis, with 500 microsatellite markers, was performed in 24 members of this family. Additionally, a genome-wide copy number analysis, using an affimetrix 250 K SNP chip, was performed in this pedigree.</p> <p>Results</p> <p>No significant LOD score was found with either parametric and non-parametric linkage analysis. The highest scores are located at chromosomes 13, 15 and 17. Genome-wide copy number analysis identified no clear cause for the disorder; but rather, several variants were present in the family members, irrespective of their affected status.</p> <p>Conclusion</p> <p>These results suggest that mental retardation in this family, unlikely what was expected, has a heterogeneous aetiology; and that several lower effect genes variants might be involved. To demonstrate such effects, our family may be too small. This study also indicates that the ascertainment of the cause of MR may be challenging, and that a complex aetiology may be present even within a pedigree, constituting an additional obstacle for genetic counselling. Variants in genes involved in molecular mechanisms of cellular plasticity, in genes involved in the development of underlying neural architectures, and in genes involved in neurodevelopment and in the ongoing function of terminally differentiated neurons may underlie the phenotypic variation of intelligence and explain instances of intellectual impairment.</p

    Effect of Irradiation and/or Leucocyte Filtration on RBC Storage Lesions

    Get PDF
    Red blood cell (RBC) storage lesions have been shown to be associated with some adverse reactions; numerous studies have focused on the lesions caused by storage, and few data on the RBC storage lesions caused by prestorage treatments of leucocyte filtration and irradiation. In this study, we examined the changes related with the RBC storage lesions, including 2,3-diphosphatidylglyceric acid (2,3-DPG), pH, free hemoglobin (Hb), supernatant free K+ and Na+ concentration, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH). Along with the increasing storage time, decreases in 2, 3-DPG levels, pH and Na+ concentration, increases in K+ and free Hb concentrations, and significant morphological changes in RBC in all groups were found. The changes in the groups of irradiation, leucocyte filtration and the combined irradiation and leucocyte filtration were more significant than those in the untreated group. Meanwhile, the MCV levels of the three treated groups were significantly lower than those in the untreated group, while the MCH variations were significantly higher. Our results suggest that irradiation and leucocyte filtration before storage may aggravate blood storage lesions

    Genome wide association for substance dependence: convergent results from epidemiologic and research volunteer samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dependences on addictive substances are substantially-heritable complex disorders whose molecular genetic bases have been partially elucidated by studies that have largely focused on research volunteers, including those recruited in Baltimore. Maryland. Subjects recruited from the Baltimore site of the Epidemiological Catchment Area (ECA) study provide a potentially-useful comparison group for possible confounding features that might arise from selecting research volunteer samples of substance dependent and control individuals. We now report novel SNP (single nucleotide polymorphism) genome wide association (GWA) results for vulnerability to substance dependence in ECA participants, who were initially ascertained as members of a probability sample from Baltimore, and compare the results to those from ethnically-matched Baltimore research volunteers.</p> <p>Results</p> <p>We identify substantial overlap between the home address zip codes reported by members of these two samples. We find overlapping clusters of SNPs whose allele frequencies differ with nominal significance between substance dependent <it>vs </it>control individuals in both samples. These overlapping clusters of nominally-positive SNPs identify 172 genes in ways that are never found by chance in Monte Carlo simulation studies. Comparison with data from human expressed sequence tags suggests that these genes are expressed in brain, especially in hippocampus and amygdala, to extents that are greater than chance.</p> <p>Conclusion</p> <p>The convergent results from these probability sample and research volunteer sample datasets support prior genome wide association results. They fail to support the idea that large portions of the molecular genetic results for vulnerability to substance dependence derive from factors that are limited to research volunteers.</p

    Humanization and Characterization of an Anti-Human TNF-Ξ± Murine Monoclonal Antibody

    Get PDF
    A murine monoclonal antibody, m357, showing the highly neutralizing activities for human tumor necrosis factor (TNF-Ξ±) was chosen to be humanized by a variable domain resurfacing approach. The non-conserved surface residues in the framework regions of both the heavy and light chain variable regions were identified via a molecular modeling of m357 built by computer-assisted homology modeling. By replacing these critical surface residues with the human counterparts, a humanized version, h357, was generated. The humanized h357 IgG1 was then stably expressed in a mammalian cell line and the purified antibody maintained the high antigen binding affinity as compared with the parental m357 based on a soluble TNF-Ξ± neutralization bioassay. Furthermore, h357 IgG1 possesses the ability to mediate antibody-dependent cell-mediated cytotoxicity and complement dependent cytotoxicity upon binding to cells bearing the transmembrane form of TNF-Ξ±. In a mouse model of collagen antibody-induced arthritis, h357 IgG significantly inhibited disease progression by intra-peritoneal injection of 50 Β΅g/mouse once-daily for 9 consecutive days. These results provided a basis for the development of h357 IgG as therapeutic use

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore