16 research outputs found

    Comparative genomics of the major parasitic worms

    Get PDF
    Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms

    alpha-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Get PDF
    © 2003 Pal et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.The aim of this study was to determine the effects of vitamin E (α-tocopherol) on the low density lipoprotein (LDL) receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.Sebely Pal, Andrew M Thomson, Cynthia DK Bottema and Paul D Roac

    An integrative study of a meromictic lake ecosystem in Antarctica

    No full text
    In nature, the complexity and structure of microbial communities varies widely, ranging from a few species to thousands of species, and from highly structured to highly unstructured communities. Here, we describe the identity and functional capacity of microbial populations within distinct layers of a pristine, marine-derived, meromictic (stratified) lake (Ace Lake) in Antarctica. Nine million open reading frames were analyzed, representing microbial samples taken from six depths of the lake size fractionated on sequential 3.0, 0.8 and 0.1 μm filters, and including metaproteome data from matching 0.1 μm filters. We determine how the interactions of members of this highly structured and moderately complex community define the biogeochemical fluxes throughout the entire lake. Our view is that the health of this delicate ecosystem is dictated by the effects of the polar light cycle on the dominant role of green sulfur bacteria in primary production and nutrient cycling, and the influence of viruses/phage and phage resistance on the cooperation between members of the microbial community right throughout the lake. To test our assertions, and develop a framework applicable to other microbially driven ecosystems, we developed a mathematical model that describes how cooperation within a microbial system is impacted by periodic fluctuations in environmental parameters on key populations of microorganisms. Our study reveals a mutualistic structure within the microbial community throughout the lake that has arisen as the result of mechanistic interactions between the physico-chemical parameters and the selection of individual members of the community. By exhaustively describing and modelling interactions in Ace Lake, we have developed an approach that may be applicable to learning how environmental perturbations affect the microbial dynamics in more complex aquatic systems

    Comparative genomics of the major parasitic worms

    Get PDF
    © 2018, The Author(s). Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms
    corecore