23 research outputs found

    Dopamine Inhibits Mitochondrial Motility in Hippocampal Neurons

    Get PDF
    The trafficking of mitochondria within neurons is a highly regulated process. In an earlier study, we found that serotonin (5-HT), acting through the 5-HT1A receptor subtype, promotes axonal transport of mitochondria in cultured hippocampal neurons by increasing Akt activity, and consequently decreasing glycogen synthase kinase (GSK3beta) activity. This finding suggests a critical role for neuromodulators in the regulation of mitochondrial trafficking in neurons. In the present study, we investigate the effects of a second important neuromodulator, dopamine, on mitochondrial transport in hippocampal neurons.Here, we show that dopamine, like 5-HT, regulates mitochondrial motility in cultured hippocampal neurons through the Akt-GSK3beta signaling cascade. But, in contrast to the stimulatory effect of 5-HT, administration of exogenous dopamine or bromocriptine, a dopamine 2 receptor (D2R) agonist, caused an inhibition of mitochondrial movement. Moreover, pretreatment with bromocriptine blocked the stimulatory effect of 5-HT on mitochondrial movement. Conversely, in cells pretreated with 5-HT, no further increases in movement were observed after administration of haloperidol, a D2R antagonist. In contrast to the effect of the D2R agonist, addition of SKF38393, a dopamine 1 receptor (D1R) agonist, promoted mitochondrial transport, indicating that the inhibitory effect of dopamine was actually the net summation of opposing influences of the two receptor subtypes. The most pronounced effect of dopamine signals was on mitochondria that were already moving directionally. Western blot analysis revealed that treatment with either a D2R agonist or a D1R antagonist decreased Akt activity, and conversely, treatment with either a D2R antagonist or a D1R agonist increased Akt activity.Our observations strongly suggest a role for both dopamine and 5-HT in regulating mitochondrial movement, and indicate that the integrated effects of these two neuromodulators may be important in determining the distribution of energy sources in neurons

    Design, baseline characteristics, and retention of African American light smokers into a randomized trial involving biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African Americans experience significant tobacco-related health disparities despite the fact that over half of African American smokers are light smokers (use ≀10 cigarettes per day). African Americans have been under-represented in smoking cessation research, and few studies have evaluated treatment for light smokers. This paper describes the study design, measures, and baseline characteristics from <it>Kick It at Swope III </it>(KIS-III), the first treatment study of bupropion for African American light smokers.</p> <p>Methods</p> <p>Five hundred forty African American light smokers were randomly assigned to receive bupropion (150mg bid) (n = 270) or placebo (n = 270) for 7 weeks. All participants received written materials and health education counseling. Participants responded to survey items and provided blood samples for evaluation of phenotype and genotype of CYP2A6 and CYP2B6 enzymes involved in nicotine and bupropion metabolism. Primary outcome was cotinine-verified 7-day point prevalence smoking abstinence at Week 26 follow-up.</p> <p>Results</p> <p>Of 2,628 individuals screened, 540 were eligible, consented, and randomized to treatment. Participants had a mean age of 46.5 years and 66.1% were women. Participants smoked an average of 8.0 cigarettes per day, had a mean exhaled carbon monoxide of 16.4ppm (range 1-55) and a mean serum cotinine of 275.8ng/ml. The mean FagerstrΓΆm Test for Nicotine Dependence was 3.2, and 72.2% of participants smoked within 30 minutes of waking. The average number of quit attempts in the past year was 3.7 and 24.2% reported using pharmacotherapy in their most recent quit attempt. Motivation and confidence to quit were high.</p> <p>Conclusion</p> <p>KIS-III is the first study designed to examine both nicotine and bupropion metabolism, evaluating CYP2A6 and CYP2B6 phenotype and genotype in conjunction with psychosocial factors, in the context of treatment of African American light smokers. Of 1629 smokers screened for study participation, only 18 (1.1%) were ineligible to participate in the study because they refused blood draws, demonstrating the feasibility of recruiting and enrolling African American light smokers into a clinical treatment trial involving biological data collection and genetic analyses. Future evaluation of individual factors associated with treatment outcome will contribute to advancing tailored tobacco use treatment with the goal of enhancing treatment and reducing health disparities for African American light smokers.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="URL">NCT00666978</a></p

    Early and Late Pathomechanisms in Alzheimer’s Disease: From Zinc to Amyloid-Ξ² Neurotoxicity

    Get PDF

    Mechanisms of Rapid Reactive Oxygen Species Generation in Response to Cytosolic Ca2+ or Zn2+ Loads in Cortical Neurons

    Get PDF
    Excessive β€œexcitotoxic” accumulation of Ca(2+) and Zn(2+) within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca(2+) or Zn(2+) loading. Induction of rapid cytosolic accumulation of either Ca(2+) (via NMDA exposure) or Zn(2+) (via Zn(2+)/Pyrithione exposure in 0 Ca(2+)) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca(2+)-induced ROS production with little effect on the Zn(2+)- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca(2+) or Zn(2+) rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn(2+)-triggered ROS, while partially attenuating the Ca(2+)-triggered ROS. Furthermore, block of the mitochondrial Ca(2+) uniporter (MCU), through which Zn(2+) as well as Ca(2+) can enter the mitochondrial matrix, substantially diminished Zn(2+) triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn(2+) entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2'-dithiodipyridine, which impairs Zn(2+) binding to cytosolic metalloproteins, far lower Zn(2+) exposures were able to induce mitochondrial Zn(2+) uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn(2+) and Ca(2+) each can trigger injurious ROS generation, Zn(2+) entry into mitochondria via the MCU may do so with particular potency. This may be of particular relevance to conditions like ischemia in which cytosolic Zn(2+) buffering is impaired due to acidosis and oxidative stress

    Intracellular Zinc Release, 12-Lipoxygenase Activation and MAPK Dependent Neuronal and Oligodendroglial Death

    No full text
    Zinc translocation from presynaptic nerve terminals to postsynaptic neurons has generally been considered the critical step leading to the accumulation of intracellular free zinc and subsequent neuronal injury. Recent evidence, however, strongly suggests that the liberation of zinc from intracellular stores upon oxidative and nitrative stimulation contributes significantly to the toxicity of this metal not only to neurons, but also to oligodendrocytes. The exact cell death signaling pathways triggered by zinc are beginning to be deciphered. In this review, we describe how the activation of 12-lipoxygenase and mitogen-activated protein kinase (MAPK) contribute to the toxicity of liberated zinc to neurons and oligodendrocytes
    corecore