14 research outputs found

    Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification

    Full text link
    The projected rise in anthropogenic CO2 and associated ocean acidification (OA) will change trace metal solubility and speciation, potentially altering Southern Ocean (SO) phytoplankton productivity and species composition. As iron (Fe) sources are important determinants of Fe bioavailability, we assessed the effect of Fe-laden dust versus inorganic Fe (FeCl3) enrichment under ambient and high pCO2 levels (390 and 900 ÎŒatm) in a naturally Fe-limited SO phytoplankton community. Despite similar Fe chemical speciation and net particulate organic carbon (POC) production rates, CO2-dependent species shifts were controlled by Fe sources. Final phytoplankton communities of both control and dust treatments were dominated by the same species, with an OA-dependent shift from the diatom Pseudo-nitzschia prolongatoides towards the prymnesiophyte Phaeocystis antarctica. Addition of FeCl3 resulted in high abundances of Nitzschia lecointei and Chaetoceros neogracilis under ambient and high pCO2, respectively. These findings reveal that both the characterization of the phytoplankton community at the species level and the use of natural Fe sources are essential for a realistic projection of the biological carbon pump in the Felimited pelagic SO under OA. As dust deposition represents a more realistic scenario for the Felimited pelagic SO under OA, unaffected net POC production and dominance of P. antarctica can potentially weaken the export of carbon and silica in the future

    The Effects of Natural Iron Fertilisation on Deep-Sea Ecology: The Crozet Plateau, Southern Indian Ocean

    Get PDF
    The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (~400 km apart and both at ~4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities

    Iron Limitation Modulates Ocean Acidification Effects on Southern Ocean Phytoplankton Communities

    Get PDF
    The potential interactive effects of iron (Fe) limitation and Ocean Acidification in the Southern Ocean (SO) are largely unknown. Here we present results of a long-term incubation experiment investigating the combined effects of CO2 and Fe availability on natural phytoplankton assemblages from the Weddell Sea, Antarctica. Active Chl a fluorescence measurements revealed that we successfully cultured phytoplankton under both Fe-depleted and Fe-enriched conditions. Fe treatments had significant effects on photosynthetic efficiency (Fv/Fm; 0.3 for Fe-depleted and 0.5 for Fe-enriched conditions), non-photochemical quenching (NPQ), and relative electron transport rates (rETR). pCO2 treatments significantly affected NPQ and rETR, but had no effect on Fv/Fm. Under Fe limitation, increased pCO2 had no influence on C fixation whereas under Fe enrichment, primary production increased with increasing pCO2 levels. These CO2-dependent changes in productivity under Fe-enriched conditions were accompanied by a pronounced taxonomic shift from weakly to heavily silicified diatoms (i.e. from Pseudo-nitzschia sp. to Fragilariopsis sp.). Under Fe-depleted conditions, this functional shift was absent and thinly silicified species dominated all pCO2 treatments (Pseudo-nitzschia sp. and Synedropsis sp. for low and high pCO2, respectively). Our results suggest that Ocean Acidification could increase primary productivity and the abundance of heavily silicified, fast sinking diatoms in Fe-enriched areas, both potentially leading to a stimulation of the biological pump. Over much of the SO, however, Fe limitation could restrict this possible CO2 fertilization effect
    corecore