75 research outputs found

    Oxidative stress causes ERK phosphorylation and cell death in cultured retinal pigment epithelium: Prevention of cell death by AG126 and 15-deoxy-delta 12, 14-PGJ(2)

    Get PDF
    BACKGROUND: The retina, which is exposed to both sunlight and very high levels of oxygen, is exceptionally rich in polyunsaturated fatty acids, which makes it a favorable environment for the generation of reactive oxygen species. The cytotoxic effects of hydrogen peroxide (H(2)O(2)) induced oxidative stress on retinal pigment epithelium were characterized in this study. METHODS: The MTT cell viability assay, Texas-Red phalloidin staining, immunohistochemistry and Western blot analysis were used to assess the effects of oxidative stress on primary human retinal pigment epithelial cell cultures and the ARPE-19 cell line. RESULTS: The treatment of retinal pigment epithelial cells with H(2)O(2 )caused a dose-dependent decrease of cellular viability, which was preceded by a significant cytoskeletal rearrangement, activation of the Extracellular signal-Regulated Kinase, lipid peroxidation and nuclear condensation. This cell death was prevented partially by the prostaglandin derivative, 15d-PGJ(2 )and by the protein kinase inhibitor, AG126. CONCLUSION: 15d-PGJ(2 )and AG126 may be useful pharmacological tools in the future capable of preventing oxidative stress induced RPE cell death in human ocular diseases

    External validation of prognostic models to predict stillbirth using the International Prediction of Pregnancy Complications (IPPIC) Network database: an individual participant data meta-analysis

    Get PDF
    Objective Stillbirth is a potentially preventable complication of pregnancy. Identifying women at high risk of stillbirth can guide decisions on the need for closer surveillance and timing of delivery in order to prevent fetal death. Prognostic models have been developed to predict the risk of stillbirth, but none has yet been validated externally. In this study, we externally validated published prediction models for stillbirth using individual participant data (IPD) meta-analysis to assess their predictive performance. Methods MEDLINE, EMBASE, DH-DATA and AMED databases were searched from inception to December 2020 to identify studies reporting stillbirth prediction models. Studies that developed or updated prediction models for stillbirth for use at any time during pregnancy were included. IPD from cohorts within the International Prediction of Pregnancy Complications (IPPIC) Network were used to validate externally the identified prediction models whose individual variables were available in the IPD. The risk of bias of the models and cohorts was assessed using the Prediction study Risk Of Bias ASsessment Tool (PROBAST). The discriminative performance of the models was evaluated using the C-statistic, and calibration was assessed using calibration plots, calibration slope and calibration-in-the-large. Performance measures were estimated separately in each cohort, as well as summarized across cohorts using random-effects meta-analysis. Clinical utility was assessed using net benefit. Results Seventeen studies reporting the development of 40 prognostic models for stillbirth were identified. None of the models had been previously validated externally, and the full model equation was reported for only one-fifth (20%, 8/40) of the models. External validation was possible for three of these models, using IPD from 19 cohorts (491 201 pregnant women) within the IPPIC Network database. Based on evaluation of the model development studies, all three models had an overall high risk of bias, according to PROBAST. In the IPD meta-analysis, the models had summary C-statistics ranging from 0.53 to 0.65 and summary calibration slopes ranging from 0.40 to 0.88, with risk predictions that were generally too extreme compared with the observed risks. The models had little to no clinical utility, as assessed by net benefit. However, there remained uncertainty in the performance of some models due to small available sample sizes. Conclusions The three validated stillbirth prediction models showed generally poor and uncertain predictive performance in new data, with limited evidence to support their clinical application. The findings suggest methodological shortcomings in their development, including overfitting. Further research is needed to further validate these and other models, identify stronger prognostic factors and develop more robust prediction models. (c) 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.Peer reviewe

    Validation of ACCESS: an automated tool to support self-management of COPD exacerbations

    No full text
    Lonneke M Boer,1 Maarten van der Heijden,2 Nathalie ME van Kuijk,1 Peter JF Lucas,2 Jan H Vercoulen,3,4 Willem JJ Assendelft,1 Erik W Bischoff,1 Tjard R Schermer1,5 1Department of Primary and Community Care, Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands; 2Department of Computing Sciences, Radboud University, Nijmegen, the Netherlands; 3Department of Medical Psychology, Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands; 4Department of Pulmonary Diseases, Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands; 5Netherlands Institute for Health Services Research (NIVEL), Utrecht, the Netherlands Background: To support patients with COPD in their self-management of symptom worsening, we developed Adaptive Computerized COPD Exacerbation Self-management Support (ACCESS), an innovative software application that provides automated treatment advice without the interference of a health care professional. Exacerbation detection is based on 12 symptom-related yes-or-no questions and the measurement of peripheral capillary oxygen saturation (SpO2), forced expiratory volume in one second (FEV1), and body temperature. Automated treatment advice is based on a decision model built by clinical expert panel opinion and Bayesian network modeling. The current paper describes the validity of ACCESS. Methods: We performed secondary analyses on data from a 3-month prospective observational study in which patients with COPD registered respiratory symptoms daily on diary cards and measured SpO2, FEV1, and body temperature. We examined the validity of the most important treatment advice of ACCESS, ie, to contact the health care professional, against symptom- and event-based exacerbations. Results: Fifty-four patients completed 2,928 diary cards. One or more of the different pieces of ACCESS advice were provided in 71.7% of all cases. We identified 115 symptom-based exacerbations. Cross-tabulation showed a sensitivity of 97.4% (95% CI 92.0–99.3), specificity of 65.6% (95% CI 63.5–67.6), and positive and negative predictive value of 13.4% (95% CI 11.2–15.9) and 99.8% (95% CI 99.3–99.9), respectively, for ACCESS’ advice to contact a health care professional in case of an exacerbation. Conclusion: In many cases (71.7%), ACCESS gave at least one self-management advice to lower symptom burden, showing that ACCES provides self-management support for both day-to-day symptom variations and exacerbations. High sensitivity shows that if there is an exacerbation, ACCESS will advise patients to contact a health care professional. The high negative predictive value leads us to conclude that when ACCES does not provide the advice to contact a health care professional, the risk of an exacerbation is very low. Thus, ACCESS can safely be used in patients with COPD to support self-management in case of an exacerbation. Keywords: COPD, exacerbations, telehealth, software application, treatment advice, self-management, health, mobile health, automated device, diagnostic accurac

    Molecular Comparison of Imatinib-Naive and Resistant Gastrointestinal Stromal Tumors: Differentially Expressed microRNAs and mRNAs

    No full text
    Despite the success of imatinib in advanced gastrointestinal stromal tumor (GIST) patients, 50% of the patients experience resistance within two years of treatment underscoring the need to get better insight into the mechanisms conferring imatinib resistance. Here the microRNA and mRNA expression profiles in primary (imatinib-naïve) and imatinib-resistant GIST were examined. Fifty-three GIST samples harboring primary KIT mutations (exon 9; n = 11/exon 11; n = 41/exon 17; n = 1) and comprising imatinib-naïve (IM-n) (n = 33) and imatinib-resistant (IM-r) (n = 20) tumors, were analyzed. The microRNA expression profiles were determined and from a subset (IM-n, n = 14; IM-r, n = 15) the mRNA expression profile was established. Ingenuity pathway analyses were used to unravel biochemical pathways and gene networks in IM-r GIST. Thirty-five differentially expressed miRNAs between IM-n and IM-r GIST samples were identified. Additionally, miRNAs distinguished IM-r samples with and without secondary KIT mutations. Furthermore 352 aberrantly expressed genes were found in IM-r samples. Pathway and network analyses revealed an association of differentially expressed genes with cell cycle progression and cellular proliferation, thereby implicating genes and pathways involved in imatinib resistance in GIST. Differentially expressed miRNAs and mRNAs between IM-n and IM-r GIST were identified. Bioinformatic analyses provided insight into the genes and biochemical pathways involved in imatinib-resistance and highlighted key genes that may be putative treatment targets.status: publishe
    corecore