67 research outputs found

    Stroke in urban and rural populations in north-east Bulgaria: incidence and case fatality findings from a 'hot pursuit' study

    Get PDF
    BACKGROUND: Bulgaria's official stroke mortality rates are higher for rural than urban areas. Official mortality data has indicated that these rates are amongst the highest in Europe. There has been a lack of studies measuring stroke incidence in urban and rural populations. METHODS: We established intensive notification networks covering 37791 residents in Varna city and 18656 residents (55% of them village-dwellers), all aged 45 to 84, in 2 rural districts. From May 1, 2000 to April 30, 2001 frequent contact was maintained with notifiers and death registrations were scanned regularly. Suspected incident strokes were assessed by study neurologists within a median of 8 days from onset. RESULTS: 742 events were referred for neurological assessment and 351 of these, which met the WHO criteria for stroke, were in persons aged 45 to 84 and were first ever in a lifetime. Incidence rates, standardised using the world standard weights for ages 45 to 84, were 909 (/100000/year) (95% CI 712–1105) and 597 (482–712) for rural and urban males and 667 (515–818) and 322 (248–395) for rural and urban females. Less than half were admitted to hospital (15% among rural females over 65). Twenty-eight day case fatality was 35% (123/351) overall and 48% (46/96) in village residents. The excess case fatality in the villages could not be explained by age or severity. CONCLUSIONS: Rural incidence rates were over twice those reported for western populations but the rate for urban females was similar to other western rates. The high level and marked heterogeneity in both stroke incidence and case fatality merit further investigation

    TOI-733 b: A planet in the small-planet radius valley orbiting a Sun-like star

    Get PDF
    We report the discovery of a hot (Teq ≈ 1055 K) planet in the small-planet radius valley that transits the Sun-like star TOI-733. It was discovered as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of {equation presented} days and a radius of {equation presented}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators gives a semi-amplitude of K = 2.23 ± 0.26 m s-1, translating into a planet mass of {equation presented}. These parameters imply that the planet is of moderate density ({equation presented}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculated planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world. This is one of only a few such planets around G-type stars that are well characterised

    Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress

    Get PDF
    Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 ± 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 ± 0.41 M⊕, 33.12 ± 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley

    Get PDF
    We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M⋆ = 0.39 M⊙, R⋆ = 0.38 R⊙), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 d. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M⊕, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the ‘radius valley’ – a region in the radius-period diagram with relatively few members – which has been interpreted as a consequence of atmospheric photoevaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photoevaporation and core-powered mass-loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere

    The Multiplanet System TOI-421*: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary*

    Get PDF
    We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations—comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echellé Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution Échelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements—and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of Pb = 5.19672 ± 0.00049 days, a mass of Mb = 7.17 ± 0.66 M⊕, and a radius of Rb = 2.680.18+0.19{2.68}_{-0.18}^{+0.19} R⊕, whereas the outer warm Neptune, TOI-421 c, has a period of Pc = 16.06819 ± 0.00035 days, a mass of Mc = 16.421.04+1.06{16.42}_{-1.04}^{+1.06} M⊕, a radius of Rc = 5.090.15+0.16{5.09}_{-0.15}^{+0.16} R⊕, and a density of ρc = 0.6850.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3. With its characteristics, the outer planet (ρc = 0.6850.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed

    Classification of Caesarean Section and Normal Vaginal Deliveries Using Foetal Heart Rate Signals and Advanced Machine Learning Algorithms

    Get PDF
    ABSTRACT – Background: Visual inspection of Cardiotocography traces by obstetricians and midwives is the gold standard for monitoring the wellbeing of the foetus during antenatal care. However, inter- and intra-observer variability is high with only a 30% positive predictive value for the classification of pathological outcomes. This has a significant negative impact on the perinatal foetus and often results in cardio-pulmonary arrest, brain and vital organ damage, cerebral palsy, hearing, visual and cognitive defects and in severe cases, death. This paper shows that using machine learning and foetal heart rate signals provides direct information about the foetal state and helps to filter the subjective opinions of medical practitioners when used as a decision support tool. The primary aim is to provide a proof-of-concept that demonstrates how machine learning can be used to objectively determine when medical intervention, such as caesarean section, is required and help avoid preventable perinatal deaths. Methodology: This is evidenced using an open dataset that comprises 506 controls (normal virginal deliveries) and 46 cases (caesarean due to pH ≤7.05 and pathological risk). Several machine-learning algorithms are trained, and validated, using binary classifier performance measures. Results: The findings show that deep learning classification achieves Sensitivity = 94%, Specificity = 91%, Area under the Curve = 99%, F-Score = 100%, and Mean Square Error = 1%. Conclusions: The results demonstrate that machine learning significantly improves the efficiency for the detection of caesarean section and normal vaginal deliveries using foetal heart rate signals compared with obstetrician and midwife predictions and systems reported in previous studies

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed
    corecore