43 research outputs found

    Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data

    Get PDF
    Recently, a number of advanced screening technologies have allowed for the comprehensive quantification of aggravating and alleviating genetic interactions among gene pairs. In parallel, TAP-MS studies (tandem affinity purification followed by mass spectroscopy) have been successful at identifying physical protein interactions that can indicate proteins participating in the same molecular complex. Here, we propose a method for the joint learning of protein complexes and their functional relationships by integration of quantitative genetic interactions and TAP-MS data. Using 3 independent benchmark datasets, we demonstrate that this method is >50% more accurate at identifying functionally related protein pairs than previous approaches. Application to genes involved in yeast chromosome organization identifies a functional map of 91 multimeric complexes, a number of which are novel or have been substantially expanded by addition of new subunits. Interestingly, we find that complexes that are enriched for aggravating genetic interactions (i.e., synthetic lethality) are more likely to contain essential genes, linking each of these interactions to an underlying mechanism. These results demonstrate the importance of both large-scale genetic and physical interaction data in mapping pathway architecture and function

    Assessing socioeconomic health care utilization inequity in Israel: impact of alternative approaches to morbidity adjustment

    Get PDF
    <p/> <p>Background</p> <p>The ability to accurately detect differential resource use between persons of different socioeconomic status relies on the accuracy of health-needs adjustment measures. This study tests different approaches to morbidity adjustment in explanation of health care utilization inequity.</p> <p>Methods</p> <p>A representative sample was selected of 10 percent (~270,000) adult enrolees of Clalit Health Services, Israel's largest health care organization. The Johns-Hopkins University Adjusted Clinical Groups<sup>® </sup>were used to assess each person's overall morbidity burden based on one year's (2009) diagnostic information. The odds of above average health care resource use (primary care visits, specialty visits, diagnostic tests, or hospitalizations) were tested using multivariate logistic regression models, separately adjusting for levels of health-need using data on age and gender, comorbidity (using the Charlson Comorbidity Index), or morbidity burden (using the Adjusted Clinical Groups). Model fit was assessed using tests of the Area Under the Receiver Operating Characteristics Curve and the Akaike Information Criteria.</p> <p>Results</p> <p>Low socioeconomic status was associated with higher morbidity burden (1.5-fold difference). Adjusting for health needs using age and gender or the Charlson index, persons of low socioeconomic status had greater odds of above average resource use for all types of services examined (primary care and specialist visits, diagnostic tests, or hospitalizations). In contrast, after adjustment for overall morbidity burden (using Adjusted Clinical Groups), low socioeconomic status was no longer associated with greater odds of specialty care or diagnostic tests (OR: 0.95, CI: 0.94-0.99; and OR: 0.91, CI: 0.86-0.96, for specialty visits and diagnostic respectively). Tests of model fit showed that adjustment using the comprehensive morbidity burden measure provided a better fit than age and gender or the Charlson Index.</p> <p>Conclusions</p> <p>Identification of socioeconomic differences in health care utilization is an important step in disparity reduction efforts. Adjustment for health-needs using a comprehensive morbidity burden diagnoses-based measure, this study showed relative underutilization in use of specialist and diagnostic services, and thus allowed for identification of inequity in health resources use, which could not be detected with less comprehensive forms of health-needs adjustments.</p

    Dopaminergic Polymorphisms Associated with Time-on-Task Declines and Fatigue in the Psychomotor Vigilance Test

    Get PDF
    Prolonged demands on the attention system can cause a decay in performance over time known as the time-on-task effect. The inter-subject differences in the rate of this decline are large, and recent efforts have been made to understand the biological bases of these individual differences. In this study, we investigate the genetic correlates of the time-on-task effect, as well as its accompanying changes in subjective fatigue and mood. N = 332 subjects performed a 20-minute test of sustained attention (the Psychomotor Vigilance Test) and rated their subjective states before and after the test. We observed substantial time-on-task effects on average, and large inter-individual differences in the rate of these declines. The 10-repeat allele of the variable number of tandem repeats marker (VNTR) in the dopamine transporter gene and the Met allele of the catechol-o-methyl transferase (COMT) Val158Met polymorphism were associated with greater vulnerability to time-on-task. Separately, the exon III DRD4 48 bp VNTR of the dopamine receptor gene DRD4 was associated with subjective decreases in energy. No polymorphisms were associated with task-induced changes in mood. We posit that the dopamine transporter and COMT genes exert their effects by increasing dopaminergic tone, which may induce long-term changes in the prefrontal cortex, an important mediator of sustained attention. Thus, these alleles may affect performance particularly when sustained dopamine release is necessary

    A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team.

    Get PDF
    BACKGROUND: The efficacy and safety of adding a protease inhibitor to two nucleoside analogues to treat human immunodeficiency virus type 1 (HIV-1) infection are not clear. We compared treatment with the protease inhibitor indinavir in addition to zidovudine and lamivudine with treatment with the two nucleosides alone in HIV-infected adults previously treated with zidovudine. METHODS: A total of 1156 patients not previously treated with lamivudine or protease inhibitors were stratified according to CD4 cell count (50 or fewer vs. 51 to 200 cells per cubic millimeter) and randomly assigned to one of two daily regimens: 600 mg of zidovudine (or stavudine) and 300 mg of lamivudine, or that regimen with 2400 mg of indinavir. The primary end point was the time to the development of the acquired immunodeficiency syndrome (AIDS) or death. RESULTS: The proportion of patients whose disease progressed to AIDS or death was lower with indinavir, zidovudine, and lamivudine (6 percent) than with zidovudine and lamivudine alone (11 percent; estimated hazard ratio, 0.50; 95 percent confidence interval, 0.33 to 0.76; P=0.001). Mortality in the two groups was 1.4 percent and 3.1 percent, respectively (estimated hazard ratio, 0.43; 95 percent confidence interval, 0.19 to 0.99; P=0.04). The effects of treatment were similar in both CD4 cell strata. The responses of CD4 cells and plasma HIV-1 RNA paralleled the clinical results. CONCLUSIONS: Treatment with indinavir, zidovudine, and lamivudine as compared with zidovudine and lamivudine alone significantly slows the progression of HIV-1 disease in patients with 200 CD4 cells or fewer per cubic millimeter and prior exposure to zidovudine
    corecore