111 research outputs found

    Harnessing Higher-Order (Meta-)Logic to Represent and Reason with Complex Ethical Theories

    Get PDF
    The computer-mechanization of an ambitious explicit ethical theory, Gewirth's Principle of Generic Consistency, is used to showcase an approach for representing and reasoning with ethical theories exhibiting complex logical features like alethic and deontic modalities, indexicals, higher-order quantification, among others. Harnessing the high expressive power of Church's type theory as a meta-logic to semantically embed a combination of quantified non-classical logics, our work pushes existing boundaries in knowledge representation and reasoning. We demonstrate that intuitive encodings of complex ethical theories and their automation on the computer are no longer antipodes.Comment: 14 page

    The history and evolution of the clinical effectiveness of haemophilia type a treatment: a systematic review.

    Get PDF
    First evidence of cases of haemophilia dates from ancient Egypt, but it was when Queen Victoria from England in the 19th century transmitted this illness to her descendants, when it became known as the "royal disease". Last decades of the 20th century account for major discoveries that improved the life expectancy and quality of life of these patients. The history and evolution of haemophilia healthcare counts ups and downs. The introduction of prophylactic schemes during the 1970s have proved to be more effective that the classic on-demand replacement of clotting factors, nevertheless many patients managed with frequent plasma transfusions or derived products became infected with the Human Immunodeficiency Virus (HIV) and Hepatitis C virus during the 1980s and 1990s. Recombinant factor VIII inception has decreased the risk of blood borne infections and restored back longer life expectancies. Main concerns for haemophilia healthcare are shifting from the pure clinical aspects to the economic considerations of long-term replacement therapy. Nowadays researchers' attention has been placed on the future costs and cost-effectiveness of costly long-term treatment. Equity considerations are relevant as well, and alternative options for less affluent countries are under the scope of further research. The aim of this review was to assess the evidence of different treatment options for haemophilia type A over the past four decades, focusing on the most important technological advances that have influenced the natural course of this "royal disease"

    A Deontic Logic Reasoning Infrastructure

    Get PDF
    A flexible infrastructure for the automation of deontic and normative reasoning is presented. Our motivation is the development, study and provision of legal and moral reasoning competencies in future intelligent machines. Since there is no consensus on the “best” deontic logic formalisms and since the answer may be application specific, a flexible infrastructure is proposed in which candidate logic formalisms can be varied, assessed and compared in experimental ethics application studies. Our work thus links the historically rich research areas of classical higher-order logic, deontic logics, normative reasoning and formal ethics

    Genome-Wide Identification of Alternative Splice Forms Down-Regulated by Nonsense-Mediated mRNA Decay in Drosophila

    Get PDF
    Alternative mRNA splicing adds a layer of regulation to the expression of thousands of genes in Drosophila melanogaster. Not all alternative splicing results in functional protein; it can also yield mRNA isoforms with premature stop codons that are degraded by the nonsense-mediated mRNA decay (NMD) pathway. This coupling of alternative splicing and NMD provides a mechanism for gene regulation that is highly conserved in mammals. NMD is also active in Drosophila, but its effect on the repertoire of alternative splice forms has been unknown, as has the mechanism by which it recognizes targets. Here, we have employed a custom splicing-sensitive microarray to globally measure the effect of alternative mRNA processing and NMD on Drosophila gene expression. We have developed a new algorithm to infer the expression change of each mRNA isoform of a gene based on the microarray measurements. This method is of general utility for interpreting splicing-sensitive microarrays and high-throughput sequence data. Using this approach, we have identified a high-confidence set of 45 genes where NMD has a differential effect on distinct alternative isoforms, including numerous RNA–binding and ribosomal proteins. Coupled alternative splicing and NMD decrease expression of these genes, which may in turn have a downstream effect on expression of other genes. The NMD–affected genes are enriched for roles in translation and mitosis, perhaps underlying the previously observed role of NMD factors in cell cycle progression. Our results have general implications for understanding the NMD mechanism in fly. Most notably, we found that the NMD–target mRNAs had significantly longer 3′ untranslated regions (UTRs) than the nontarget isoforms of the same genes, supporting a role for 3′ UTR length in the recognition of NMD targets in fly

    Whole-Genome and Chromosome Evolution Associated with Host Adaptation and Speciation of the Wheat Pathogen Mycosphaerella graminicola

    Get PDF
    The fungus Mycosphaerella graminicola has been a pathogen of wheat since host domestication 10,000–12,000 years ago in the Fertile Crescent. The wheat-infecting lineage emerged from closely related Mycosphaerella pathogens infecting wild grasses. We use a comparative genomics approach to assess how the process of host specialization affected the genome structure of M. graminicola since divergence from the closest known progenitor species named M. graminicola S1. The genome of S1 was obtained by Illumina sequencing resulting in a 35 Mb draft genome sequence of 32X. Assembled contigs were aligned to the previously sequenced M. graminicola genome. The alignment covered >90% of the non-repetitive portion of the M. graminicola genome with an average divergence of 7%. The sequenced M. graminicola strain is known to harbor thirteen essential chromosomes plus eight dispensable chromosomes. We found evidence that structural rearrangements significantly affected the dispensable chromosomes while the essential chromosomes were syntenic. At the nucleotide level, the essential and dispensable chromosomes have evolved differently. The average synonymous substitution rate in dispensable chromosomes is considerably lower than in essential chromosomes, whereas the average non-synonymous substitution rate is three times higher. Differences in molecular evolution can be related to different transmission and recombination patterns, as well as to differences in effective population sizes of essential and dispensable chromosomes. In order to identify genes potentially involved in host specialization or speciation, we calculated ratios of synonymous and non-synonymous substitution rates in the >9,500 aligned protein coding genes. The genes are generally under strong purifying selection. We identified 43 candidate genes showing evidence of positive selection, one encoding a potential pathogen effector protein. We conclude that divergence of these pathogens was accompanied by structural rearrangements in the small dispensable chromosomes, while footprints of positive selection were present in only a small number of protein coding genes

    Using direct observations on multiple occasions to measure household food availability among low-income Mexicano residents in Texas colonias

    Get PDF
    BACKGROUND: It has been recognized that the availability of foods in the home are important to nutritional health, and may influence the dietary behavior of children, adolescents, and adults. It is therefore important to understand food choices in the context of the household setting. Considering their importance, the measurement of household food resources becomes critical.Because most studies use a single point of data collection to determine the types of foods that are present in the home, which can miss the change in availability within a month and when resources are not available, the primary objective of this pilot study was to examine the feasibility and value of conducting weekly in-home assessments of household food resources over the course of one month among low-income Mexicano families in Texas colonias. METHODS: We conducted five in-home household food inventories over a thirty-day period in a small convenience sample; determined the frequency that food items were present in the participating households; and compared a one-time measurement with multiple measurements.After the development and pre-testing of the 252-item culturally and linguistically- appropriate household food inventory instrument that used direct observation to determine the presence and amount of food and beverage items in the home (refrigerator, freezer, pantry, elsewhere), two trained promotoras recruited a convenience sample of 6 households; administered a baseline questionnaire (personal info, shopping habits, and food security); conducted 5 in-home assessments (7-day interval) over a 30-day period; and documented grocery shopping and other food-related activities within the previous week of each in-home assessment. All data were collected in Spanish. Descriptive statistics were calculated for mean and frequency of sample characteristics, food-related activities, food security, and the presence of individual food items. Due to the small sample size of the pilot data, the Friedman Test and Kendall's W were used to assess the consistency of household food supplies across multiple observations. RESULTS: Complete data were collected from all 6 Mexicano women (33.2y +/- 3.3; 6.5 +/- 1.5 adults/children in household (HH); 5 HH received weekly income; and all were food insecure. All households purchased groceries within a week of at least four of the five assessments. The weekly presence and amounts of fresh and processed fruits and vegetables, dairy, meats, breads, cereals, beverages, and oils and fats varied. Further, the results revealed the inadequacy of a one-time measurement of household food resources, compared with multiple measures. The first household food inventory as a one-time measure would have mistakenly identified at least one-half of the participant households without fresh fruit, canned vegetables, dairy, protein foods, grains, chips, and sugar-sweetened beverages. CONCLUSIONS: This study highlights the value of documenting weekly household food supplies, especially in households where income resources may be more volatile. Clearly, the data show that a single HFI may miss the changes in availability--presence and amount--that occur among low-income Mexicano households who face challenges that require frequent purchase of foods and beverages. Use of multiple household food inventories can inform the development and implementation of nutrition-related policies and culturally sensitive nutrition education programs

    Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila

    Get PDF
    During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP

    Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

    Get PDF
    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions
    corecore