86 research outputs found

    Proteotypic classification of spontaneous and transgenic mammary neoplasms

    Get PDF
    INTRODUCTION: Mammary tumors in mice are categorized by using morphologic and architectural criteria. Immunolabeling for terminal differentiation markers was compared among a variety of mouse mammary neoplasms because expression of terminal differentiation markers, and especially of keratins, provides important information on the origin of neoplastic cells and their degree of differentiation. METHODS: Expression patterns for terminal differentiation markers were used to characterize tumor types and to study tumor progression in transgenic mouse models of mammary neoplasia (mice overexpressing Neu (Erbb2), Hras, Myc, Notch4, SV40-TAg, Tgfa, and Wnt1), in spontaneous mammary carcinomas, and in mammary neoplasms associated with infection by the mouse mammary tumor virus (MMTV). RESULTS: On the basis of the expression of terminal differentiation markers, three types of neoplasm were identified: first, simple carcinomas composed exclusively of cells with a luminal phenotype are characteristic of neoplasms arising in mice transgenic for Neu, Hras, Myc, Notch4, and SV40-TAg; second, 'complex carcinomas' displaying luminal and myoepithelial differentiation are characteristic of type P tumors arising in mice transgenic for Wnt1, neoplasms arising in mice infected by the MMTV, and spontaneous adenosquamous carcinomas; and third, 'carcinomas with epithelial to mesenchymal transition (EMT)' are a characteristic feature of tumor progression in Hras-, Myc-, and SV40-TAg-induced mammary neoplasms and PL/J and SJL/J mouse strains, and display de novo expression of myoepithelial and mesenchymal cell markers. In sharp contrast, EMT was not detected in papillary adenocarcinomas arising in BALB/cJ mice, spontaneous adenoacanthomas, neoplasms associated with MMTV-infection, or in neoplasms arising in mice transgenic for Neu and Wnt1. CONCLUSIONS: Immunohistochemical profiles of complex neoplasms are consistent with a stem cell origin, whereas simple carcinomas might originate from a cell committed to the luminal lineage. In addition, these results suggest that the initiating oncogenic events determine the morphologic features associated with cancer progression because EMT is observed only in certain types of neoplasm

    Statistical Parsimony Networks and Species Assemblages in Cephalotrichid Nemerteans (Nemertea)

    Get PDF
    BACKGROUND: It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. METHODOLOGY/PRINCIPAL FINDINGS: Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. CONCLUSIONS/SIGNIFICANCE: Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling

    MicroRNA-mediated drug resistance in breast cancer

    Get PDF
    Chemoresistance is one of the major hurdles to overcome for the successful treatment of breast cancer. At present, there are several mechanisms proposed to explain drug resistance to chemotherapeutic agents, including decreased intracellular drug concentrations, mediated by drug transporters and metabolic enzymes; impaired cellular responses that affect cell cycle arrest, apoptosis, and DNA repair; the induction of signaling pathways that promote the progression of cancer cell populations; perturbations in DNA methylation and histone modifications; and alterations in the availability of drug targets. Both genetic and epigenetic theories have been put forward to explain the mechanisms of drug resistance. Recently, a small non-coding class of RNAs, known as microRNAs, has been identified as master regulators of key genes implicated in mechanisms of chemoresistance. This article reviews the role of microRNAs in regulating chemoresistance and highlights potential therapeutic targets for reversing miRNA-mediated drug resistance. In the future, microRNA-based treatments, in combination with traditional chemotherapy, may be a new strategy for the clinical management of drug-resistant breast cancers

    Breast tumour angiogenesis

    Get PDF
    The central importance of tumour neovascularization has been emphasized by clinical trials using antiangiogenic therapy in breast cancer. This review gives a background to breast tumour neovascularization in in situ and invasive breast cancer, outlines the mechanisms by which this is achieved and discusses the influence of the microenvironment, focusing on hypoxia. The regulation of angiogenesis and the antivascular agents that are used in an antiangiogenic dosing schedule, both novel and conventional, are also summarized

    Pharmacogenetics: data, concepts and tools to improve drug discovery and drug treatment

    Get PDF
    Variation in the human genome is a most important cause of variable response to drugs and other xenobiotics. Susceptibility to almost all diseases is determined to some extent by genetic variation. Driven by the advances in molecular biology, pharmacogenetics has evolved within the past 40 years from a niche discipline to a major driving force of clinical pharmacology, and it is currently one of the most actively pursued disciplines in applied biomedical research in general. Nowadays we can assess more than 1,000,000 polymorphisms or the expression of more than 25,000 genes in each participant of a clinical study – at affordable costs. This has not yet significantly changed common therapeutic practices, but a number of physicians are starting to consider polymorphisms, such as those in CYP2C9, CYP2C19, CYP2D6, TPMT and VKORC1, in daily medical practice. More obviously, pharmacogenetics has changed the practices and requirements in preclinical and clinical drug research; large clinical trials without a pharmacogenomic add-on appear to have become the minority. This review is about how the discipline of pharmacogenetics has evolved from the analysis of single proteins to current approaches involving the broad analyses of the entire genome and of all mRNA species or all metabolites and other approaches aimed at trying to understand the entire biological system. Pharmacogenetics and genomics are becoming substantially integrated fields of the profession of clinical pharmacology, and education in the relevant methods, knowledge and concepts form an indispensable part of the clinical pharmacology curriculum and the professional life of pharmacologists from early drug discovery to pharmacovigilance

    Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation

    Get PDF
    Recently, the increased use of monocyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This may have potential negative effects on living organisms. The biotransformation mechanisms of monocyclic nonsteroidal anti-inflammatory drugs in the human body and in other mammals occur by hydroxylation and conjugation with glycine or glucuronic acid. Biotransformation/biodegradation of monocyclic non-steroidal anti-inflammatory drugs in the environment may be caused by fungal or bacterial microorganisms. Salicylic acid derivatives are degraded by catechol or gentisate as intermediates which are cleaved by dioxygenases. The key intermediate of the paracetamol degradation pathways is hydroquinone. Sometimes, after hydrolysis of this drug, 4- aminophenol is formed, which is a dead-end metabolite. Ibuprofen is metabolized by hydroxylation or activation with CoA, resulting in the formation of isobutylocatechol. The aim of this work is to attempt to summarize the knowledge about environmental risk connected with the presence of over-the-counter antiinflammatory drugs, their sources and the biotransformation and/or biodegradation pathways of these drugs
    corecore