1,831 research outputs found
Dimeric SecA Couples the Preprotein Translocation in an Asymmetric Manner
The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles
Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis
Background: Cronobacter sakazakii and C. malonaticus can cause serious diseases especially in infants where they are associated with rare but fatal neonatal infections such as meningitis and necrotising enterocolitis.
Methods: This study used 104 whole genome sequenced strains, covering all seven species in the genus, to analyse capsule associated clusters of genes involved in the biosynthesis of the O-antigen, colanic acid, bacterial cellulose, enterobacterial common antigen (ECA), and a previously uncharacterised K-antigen.
Results: Phylogeny of the gnd and galF genes flanking the O-antigen region enabled the defining of 38 subgroups which are potential serotypes. Two variants of the colanic acid synthesis gene cluster (CA1 and CA2) were found which differed with the absence of galE in CA2. Cellulose (bcs genes) were present in all species, but were absent in C. sakazakii sequence type (ST) 13 and clonal complex (CC) 100 strains. The ECA locus was found in all strains. The K-antigen capsular polysaccharide Region 1 (kpsEDCS) and Region 3 (kpsMT) genes were found in all Cronobacter strains. The highly variable Region 2 genes were assigned to 2 homology groups (K1 and K2). C. sakazakii and C. malonaticus isolates with capsular type [K2:CA2:Cell+] were associated with neonatal meningitis and necrotizing enterocolitis. Other capsular types were less associated with clinical infections. Conclusion: This study proposes a new capsular typing scheme which identifies a possible important virulence trait associated with severe neonatal infections. The various capsular polysaccharide structures warrant further investigation as they could be relevant to macrophage survival, desiccation resistance, environmental survival, and biofilm formation in the hospital environment, including neonatal enteral feeding tubes
A role for core planar polarity proteins in cell contact-mediated orientation of planar cell division across the mammalian embryonic skin
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2017. Supplementary information accompanies this paper at doi:10.1038/s41598-017-01971-2.The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.Peer reviewe
IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.
Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury
Patients with migraine with aura have increased flow mediated dilation
<p>Abstract</p> <p>Background</p> <p>Endothelium-derived nitric oxide (NO) mediates the arterial dilation following a flow increase (i.e. flow-mediated dilation, FMD), easily assessed in the brachial artery. NO is also involved in cerebral hemodynamics and it is supposed to trigger vascular changes occurring during migraine. This study aimed at investigating whether migraine patients present an altered response to NO also in the peripheral artery system.</p> <p>Methods</p> <p>We enrolled 21 migraineurs (10 with aura [MwA], 11 without aura [MwoA]), and 13 controls. FMD was evaluated with ultrasound in all subjects by measuring the percentage increase of the brachial artery diameter induced by hyperaemia reactive to sustained cuff inflation around the arm above systolic pressure. FMD values were then normalized for shear stress.</p> <p>Results</p> <p>Normalized FMD values were higher in patients with MwA (28.5 10<sup>-2</sup>%.s) than in controls (9.0 10<sup>-2</sup>%.s) and patients with MwoA (13.7 10<sup>-2</sup>%.s) (p < 0.001). FMD was over the median value (19%) in 23.1% of controls, in 45.5% of the MwoA patients, and in 90% of the MwA patients.</p> <p>Conclusions</p> <p>Migraineurs with aura present an excessive arterial response to hyperaemia, likely as an effect of an increased sensitivity to endothelium-derived nitric oxide. This phenomenon observed peripherally might reflect similar characteristics in the cerebral circulation.</p
Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs
Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system
Theta-paced flickering between place-cell maps in the hippocampus
The ability to recall discrete memories is thought to depend on the formation of attractor states in recurrent neural networks. In such networks, representations can be reactivated reliably from subsets of the cues that were present when the memory was encoded, at the same time as interference from competing representations is minimized. Theoretical studies have pointed to the recurrent CA3 system of the hippocampus as a possible attractor network. Consistent with predictions from these studies, experiments have shown that place representations in CA3 and downstream CA1 tolerate small changes in the configuration of the environment but switch to uncorrelated representations when dissimilarities become larger. The kinetics supporting such network transitions, at the subsecond time scale, is poorly understood, however. Here we show that instantaneous transformation of the spatial context (\u2018teleportation\u2019) does not change the hippocampal representation all at once but is followed by temporary bistability in the discharge activity of CA3 ensembles. Rather than sliding through a continuum of intermediate activity states, the CA3 network undergoes a short period of competitive flickering between pre-formed
representations for past and present environment, before settling on the latter. Network flickers are extremely fast, often with complete replacement of the active ensemble from one theta cycle to the next. Within individual cycles, segregation is stronger towards the end, when firing starts to decline, pointing to the theta cycle as a temporal unit for expression of attractor states in the hippocampus. Repetition of pattern-completion processes across successive theta cycles may facilitate error correction and enhance discriminative power in the presence of weak and ambiguous input cues
Comparative transcriptome sequencing of germline and somatic tissues of the Ascaris suum gonad
<p>Abstract</p> <p>Background</p> <p><it>Ascaris suum </it>(large roundworm of pigs) is a parasitic nematode that causes substantial losses to the meat industry. This nematode is suitable for biochemical studies because, unlike <it>C. elegans</it>, homogeneous tissue samples can be obtained by dissection. It has large sperm, produced in great numbers that permit biochemical studies of sperm motility. Widespread study of <it>A. suum </it>would be facilitated by more comprehensive genome resources and, to this end, we have produced a gonad transcriptome of <it>A. suum</it>.</p> <p>Results</p> <p>Two 454 pyrosequencing runs generated 572,982 and 588,651 reads for germline (TES) and somatic (VAS) tissues of the <it>A. suum </it>gonad, respectively. 86% of the high-quality (HQ) reads were assembled into 9,955 contigs and 69,791 HQ reads remained as singletons. 2.4 million bp of unique sequences were obtained with a coverage that reached 16.1-fold. 4,877 contigs and 14,339 singletons were annotated according to the <it>C. elegans </it>protein and the Kyoto Encyclopedia of Genes and Genomes (KEGG) protein databases. Comparison of TES and VAS transcriptomes demonstrated that genes participating in DNA replication, RNA transcription and ubiquitin-proteasome pathways are expressed at significantly higher levels in TES tissues than in VAS tissues. Comparison of the <it>A. suum </it>TES transcriptome with the <it>C. elegans </it>microarray dataset identified 165 <it>A. suum </it>germline-enriched genes (83% are spermatogenesis-enriched). Many of these genes encode serine/threonine kinases and phosphatases (KPs) as well as tyrosine KPs. Immunoblot analysis further suggested a critical role of phosphorylation in both testis development and spermatogenesis. A total of 2,681 <it>A. suum </it>genes were identified to have associated RNAi phenotypes in <it>C. elegans</it>, the majority of which display embryonic lethality, slow growth, larval arrest or sterility.</p> <p>Conclusions</p> <p>Using deep sequencing technology, this study has produced a gonad transcriptome of <it>A. suum</it>. By comparison with <it>C. elegans </it>datasets, we identified sets of genes associated with spermatogenesis and gonad development in <it>A. suum</it>. The newly identified genes encoding KPs may help determine signaling pathways that operate during spermatogenesis. A large portion of <it>A. suum </it>gonadal genes have related RNAi phenotypes in <it>C. elegans </it>and, thus, might be RNAi targets for parasite control.</p
Microbiology of the phyllosphere: a playground for testing ecological concepts
Many concepts and theories in ecology are highly debated, because it is often difficult to design decisive tests with sufficient replicates. Examples include biodiversity theories, succession concepts, invasion theories, coexistence theories, and concepts of life history strategies. Microbiological tests of ecological concepts are rapidly accumulating, but have yet to tap into their full potential to complement traditional macroecological theories. Taking the example of microbial communities on leaf surfaces (i.e. the phyllosphere), we show that most explorations of ecological concepts in this field of microbiology focus on autecology and population ecology, while community ecology remains understudied. Notable exceptions are first tests of the island biogeography theory and of biodiversity theories. Here, the phyllosphere provides the unique opportunity to set up replicated experiments, potentially moving fields such as biogeography, macroecology, and landscape ecology beyond theoretical and observational evidence. Future approaches should take advantage of the great range of spatial scales offered by the leaf surface by iteratively linking laboratory experiments with spatial simulation models
- …