8 research outputs found

    DNA Demethylation and USF Regulate the Meiosis-Specific Expression of the Mouse Miwi

    Get PDF
    Miwi, a member of the Argonaute family, is required for initiating spermiogenesis; however, the mechanisms that regulate the expression of the Miwi gene remain unknown. By mutation analysis and transgenic models, we identified a 303 bp proximal promoter region of the mouse Miwi gene, which controls specific expression from midpachytene spermatocytes to round spermatids during meiosis. We characterized the binding sites of transcription factors NF-Y (Nuclear Factor Y) and USF (Upstream Stimulatory Factor) within the core promoter and found that both factors specifically bind to and activate the Miwi promoter. Methylation profiling of three CpG islands within the proximal promoter reveals a markedly inverse correlation between the methylation status of the CpG islands and germ cell type–specific expression of Miwi. CpG methylation at the USF–binding site within the E2 box in the promoter inhibits the binding of USF. Transgenic Miwi-EGFP and endogenous Miwi reveal a subcellular co-localization pattern in the germ cells of the Miwi-EGFP transgenic mouse. Furthermore, the DNA methylation profile of the Miwi promoter–driven transgene is consistent with that of the endogenous Miwi promoter, indicating that Miwi transgene is epigenetically modified through methylation in vivo to ensure its spatio-temporal expression. Our findings suggest that USF controls Miwi expression from midpachytene spermatocytes to round spermatids through methylation-mediated regulation. This work identifies an epigenetic regulation mechanism for the spatio-temporal expression of mouse Miwi during spermatogenesis

    Organomegaly and tumors in transgenic mice with targeted expression of HpaII methyltransferase in smooth muscle cells

    No full text
    Current data suggest that angiogenesis, smooth muscle cell migration, differentiation and proliferation may be epigenetically regulated. Prokaryotic DNA methyltransferases have been proposed as tools to modify mammalian DNA methylation. In order to assess the impact of DNA hypermethylation on smooth muscle pathophysiology, we expressed an HpaII site-specific methyltransferase transgene in smooth muscle cells in mice. The enzyme is expected to target only a subset (CCGG) of unmethylated CpG dinucleotides, thus avoiding possible deleterious effects of widespread hypermethylation. Transgenics of two independent lines were born at expected frequencies, showed no obvious abnormalities and were fertile. Nevertheless, ∼30% of >1 year-old transgenics developed organomegaly and ∼20% showed a range of tumors. Global DNA methylation was unchanged in transgenic tissue whether hyperplastic or normal, but tumor DNA showed a pronounced global hypermethylation. DNA hypermethylation was not indiscriminate, as five tested tumor suppressor genes showed promoter CpG and non-CpG hypermethylation and transcriptional downregulation, whereas the methylation status of one intergenic CpG islands, repeated elements (n = 2) and non-tumor suppressor gene promoters (n = 3) was unchanged. Our work is the first report on the effects of HpaII methyltransferase on endogenous chromatin and in a whole animal. Furthermore, our data expand previous findings that imply that global DNA hypomethylation is not an obligate oncogenic pathway at least in the tumor types examined here

    The adult human testis transcriptional cell atlas

    Get PDF
    Human adult spermatogenesis balances spermatogonial stem cell (SSC) self-renewal and differentiation, alongside complex germ cell-niche interactions, to ensure long-term fertility and faithful genome propagation. Here, we performed single-cell RNA sequencing of similar to 6500 testicular cells from young adults. We found five niche/somatic cell types (Leydig, myoid, Sertoli, endothelial, macrophage), and observed germline-niche interactions and key human-mouse differences. Spermatogenesis, including meiosis, was reconstructed computationally, revealing sequential coding, non-coding, and repeat-element transcriptional signatures. Interestingly, we identified five discrete transcriptional/developmental spermatogonial states, including a novel early SSC state, termed State 0. Epigenetic features and nascent transcription analyses suggested developmental plasticity within spermatogonial States. To understand the origin of State 0, we profiled testicular cells from infants, and identified distinct similarities between adult State 0 and infant SSCs. Overall, our datasets describe key transcriptional and epigenetic signatures of the normal adult human testis, and provide new insights into germ cell developmental transitions and plasticity

    Eukaryotic DNA methylation

    No full text
    corecore