29 research outputs found

    Association of Early Beta-amyloid Accumulation and Neuroinflammation Measured with [11C]PBR28 in Elderly Individuals Without Dementia

    Get PDF
    OBJECTIVE: To examine whether early β-amyloid (Aβ) accumulation and metabolic risk factors are associated with neuroinflammation in elderly individuals without dementia. METHODS: We examined 54 volunteers (mean age 70.0, 56% women, 51% APOE ε4 carriers) with a TSPO-tracer [11C]PBR28 to assess neuroinflammation and with [11C]Pittsburgh compound B (PiB) to assess cerebral Aβ accumulation. [11C]PBR28 and [11C]PiB standardized uptake value ratios (SUVRs) were quantified in six regions of interests by using the cerebellar cortex as a pseudo-reference/reference region, respectively. Fasting venous glucose, insulin, and high sensitivity C-reactive protein (hs-CRP) values were determined. Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated. A subset of individuals (n=11) underwent CSF sampling, and Aβ40, Aβ42, total-tau, phospho-tau, soluble TREM2 and YKL-40 levels were measured. RESULTS: Among the whole study group, no significant association was found between [11C]PiB and [11C]PBR28 SUVR composite scores (slope 0.02, p=0.30). However, higher [11C]PiB binding was associated with higher [11C]PBR28 binding among amyloid negative ([11C]PiB composite score ≤1.5) (TSPO-genotype, age and sex adjusted slope 0.26, p=0.008) but not among amyloid positive participants (slope: -0.004, p=0.88). Higher CSF sTREM2 (rs 0.72, p=0.01) and YKL-40 (rs=0.63, p=0.04) concentrations were associated with a higher [11C]PBR28 composite score. Higher body mass index, HOMA-IR, and hs-CRP were associated with higher [11C]PBR28 binding in brain regions where Aβ accumulation is first detected in Alzheimer's disease (AD). CONCLUSIONS: While there was no association between amyloid and neuroinflammation in the overall study group, neuroinflammation was associated with amyloid among the subgroup at early stages of amyloid pathology

    Midlife insulin resistance, APOE genotype, and late-life brain amyloid accumulation

    Get PDF
    ObjectiveTo examine whether midlife insulin resistance is an independent risk factor for brain amyloid accumulation in vivo after 15 years, and whether this risk is modulated by APOE epsilon 4 genotype.MethodsThis observational study examined 60 elderly volunteers without dementia (mean age at baseline 55.4 and at follow-up 70.9 years, 55.5% women) from the Finnish population-based, nationwide Health2000 study with [C-11]Pittsburgh compound B-PET imaging in 2014-2016. The participants were recruited according to their homeostatic model assessment of insulin resistance (HOMA-IR) values in the year 2000, and their APOE epsilon 4 genotype. The exposure group (IR+, n = 30) consisted of individuals with HOMA-IR > 2.17 at baseline (highest tertile of the Health2000 study population), and the control group (IR-, n = 30) consisted of individuals with HOMA-IR < 1.25 at baseline (lowest tertile). The groups were enriched for APOE epsilon 4 carriers, resulting in 50% (n = 15) APOE epsilon 4 carriers in both groups. Analyses were performed with multivariate logistic and linear regression.ResultsAn amyloid-positive PET scan was found in 33.3% of the IR-group and 60.0% of the IR+ group (odds ratio 3.0, 95% confidence interval 1.1-8.9, p = 0.04). The increased risk was seen in carriers and noncarriers of APOE epsilon 4 genotype. Higher midlife, but not late-life continuous HOMA-IR was associated with a greater brain amyloid burden at follow-up after multivariate adjustments for other cognitive and metabolic risk factors (ss = 0.11, 95% confidence interval 0.002-0.22, p = 0.04).ConclusionsThese results indicate that midlife insulin resistance is an independent risk factor for brain amyloid accumulation in elderly individuals without dementia

    Insulin Resistance Predicts Cognitive Decline: An 11-Year Follow-up of a Nationally Representative Adult Population Sample

    Get PDF
    OBJECTIVEThe aim of this study was to examine whether insulin resistance, assessed by HOMA of insulin resistance (HOMA-IR), is an independent predictor of cognitive decline.RESEARCH DESIGN AND METHODSThe roles of HOMA-IR, fasting insulin and glucose, HbA(1c), and hs-CRP as predictors of cognitive performance and its change were evaluated in the Finnish nationwide, population-based Health 2000 Health Examination Survey and its 11-year follow-up, the Health 2011 study (n = 3,695, mean age at baseline 49.3 years, 55.5% women). Categorical verbal fluency, word-list learning, and word-list delayed recall were used as measures of cognitive function. Multivariate linear regression analysis was performed and adjusted for previously reported risk factors for cognitive decline.RESULTSHigher baseline HOMA-IR and fasting insulin levels were independent predictors of poorer verbal fluency performance (P = 0.0002 for both) and of a greater decline in verbal fluency during the follow-up time (P = 0.004 for both). Baseline HOMA-IR and insulin did not predict word-list learning or word-list delayed recall scores. There were no interactions between HOMA-IR and apolipoprotein E epsilon 4 (APOE epsilon 4) genotype, hs-CRP, or type 2 diabetes on the cognitive tests. Fasting glucose and hs-CRP levels at baseline were not associated with cognitive functioning.CONCLUSIONSOur results show that higher serum fasting insulin and insulin resistance predict poorer verbal fluency and a steeper decline in verbal fluency during 11 years in a representative sample of an adult population. Prevention and treatment of insulin resistance might help reduce cognitive decline later in life

    Albuminuria and Microalbuminuria as Predictors of Cognitive Performance in a General Population: An 11-Year Follow-Up Study

    Get PDF
    Microalbuminuria, defined as urine albumin-to-creatinine ratio (UACR)> 3.0 mg/mmol and 3.0 mg/mmol), and cognitive impairment. Previous studies on microalbuminuria, albuminuria, and cognition in the middle-aged have not provided repeated cognitive testing at different time-points. We hypothesized that albuminuria (micro-plus macroalbuminuria) and microalbuminuria would predict cognitive decline independently of previously reported risk factors for cognitive decline, including cardiovascular risk factors. In addition, we hypothesized that UACR levels even below the cut-off for microalbuminuria might be associated with cognitive functioning. These hypotheses were tested in the Finnish nationwide, population-based Health 2000 Survey (n = 5,921, mean age 52.6, 55.0% women), and its follow-up, Health 2011 (n = 3,687, mean age at baseline 49.3, 55.6% women). Linear regression analysis was used to determine the associations between measures of albuminuria and cognitive performance. Cognitive functions were assessed with verbal fluency, word-list learning, word-list delayed recall (at baseline and at follow-up), and with simple and visual choice reaction time tests (at baseline only). Here, we show that micro-plus macroalbuminuria associated with poorer wordlist learning and a slower reaction time at baseline, with poorer word-list learning at follow-up, and with a steeper decline in word-list learning during 11 years after multivariate adjustments. Also, higher continuous UACR consistently associated with poorer verbal fluency at levels below microalbuminuria. These results suggest that UACR might have value in evaluating the risk for cognitive decline

    APOE ε4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly

    Get PDF
    BACKGROUND: Neuroinflammation, characterized by increased reactivity of microglia and astrocytes in the brain, is known to be present at various stages of the Alzheimer's disease (AD) continuum. However, its presence and relationship with amyloid pathology in cognitively normal at-risk individuals is less clear. Here, we used positron emission tomography (PET) and blood biomarker measurements to examine differences in neuroinflammation and beta-amyloid (Aβ) and their association in cognitively unimpaired homozygotes, heterozygotes, or non-carriers of the APOE ε4 allele, the strongest genetic risk for sporadic AD. METHODS: Sixty 60-75-year-old APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) were recruited in collaboration with the local Auria biobank. The participants underwent 11C-PK11195 PET (targeting 18-kDa translocator protein, TSPO), 11C-PiB PET (targeting Aβ), brain MRI, and neuropsychological testing including a preclinical cognitive composite (APCC). 11C-PK11195 distribution volume ratios and 11C-PiB standardized uptake value ratios (SUVRs) were calculated for regions typical for early Aβ accumulation in AD. Blood samples were drawn for measuring plasma glial fibrillary acidic protein (GFAP) and plasma Aβ1-42/1.40. RESULTS: In our cognitively unimpaired sample, cortical 11C-PiB-binding increased according to APOE ε4 gene dose (median composite SUVR 1.47 (range 1.38-1.66) in non-carriers, 1.55 (1.43-2.02) in heterozygotes, and 2.13 (1.61-2.83) in homozygotes, P = 0.002). In contrast, cortical composite 11C-PK11195-binding did not differ between the APOE ε4 gene doses (P = 0.27) or between Aβ-positive and Aβ-negative individuals (P = 0.81) and associated with higher Aβ burden only in APOE ε4 homozygotes (Rho = 0.47, P = 0.043). Plasma GFAP concentration correlated with cortical 11C-PiB (Rho = 0.35, P = 0.040), but not 11C-PK11195-binding (Rho = 0.13, P = 0.47) in Aβ-positive individuals. In the total cognitively unimpaired population, both higher composite 11C-PK11195-binding and plasma GFAP were associated with lower hippocampal volume, whereas elevated 11C-PiB-binding was associated with lower APCC scores. CONCLUSIONS: Only Aβ burden measured by PET, but not markers of neuroinflammation, differed among cognitively unimpaired elderly with different APOE ε4 gene dose. However, APOE ε4 gene dose seemed to modulate the association between neuroinflammation and Aβ

    ASIC-E4: Interplay of Beta-Amyloid, Synaptic Density and Neuroinflammation in Cognitively Normal Volunteers With Three Levels of Genetic Risk for Late-Onset Alzheimer's Disease – Study Protocol and Baseline Characteristics

    Get PDF
    Background: Detailed characterization of early pathophysiological changes in preclinical Alzheimer's disease (AD) is necessary to enable development of correctly targeted and timed disease-modifying treatments. ASIC-E4 study (“Beta-Amyloid, Synaptic loss, Inflammation and Cognition in healthy APOE ε4 carriers”) combines state-of-the-art neuroimaging and fluid-based biomarker measurements to study the early interplay of three key pathological features of AD, i.e., beta-amyloid (Aβ) deposition, neuroinflammation and synaptic dysfunction and loss in cognitively normal volunteers with three different levels of genetic (APOE-related) risk for late-onset AD. Objective: Here, our objective is to describe the study design, used protocols and baseline demographics of the ASIC-E4 study. Methods/Design: ASIC-E4 is a prospective observational multimodal imaging study performed in Turku PET Centre in collaboration with University of Gothenburg. Cognitively normal 60–75-year-old-individuals with known APOE ε4/ε4 genotype were recruited via local Auria Biobank (Turku, Finland). Recruitment of the project has been completed in July 2020 and 63 individuals were enrolled to three study groups (Group 1: APOE ε4/ε4, N = 19; Group 2: APOE ε4/ε3, N = 22; Group 3: APOE ε3/ε3, N = 22). At baseline, all participants will undergo positron emission tomography imaging with tracers targeted against Aβ deposition (11C-PIB), activated glia (11C-PK11195) and synaptic vesicle glycoprotein 2A (11C-UCB-J), two brain magnetic resonance imaging scans, and extensive cognitive testing. In addition, blood samples are collected for various laboratory measurements and blood biomarker analysis and cerebrospinal fluid samples are collected from a subset of participants based on additional voluntary informed consent. To evaluate the predictive value of the early neuroimaging findings, neuropsychological evaluation and blood biomarker measurements will be repeated after a 4-year follow-up period. Discussion: Results of the ASIC-E4 project will bridge the gap related to limited knowledge of the synaptic and inflammatory changes and their association with each other and Aβ in “at-risk” individuals. Thorough in vivo characterization of the biomarker profiles in this population will produce valuable information for diagnostic purposes and future drug development, where the field has already started to look beyond Aβ

    Midlife Insulin Resistance as a Predictor for Late-Life Cognitive Function and Cerebrovascular Lesions

    Get PDF
    Background: Type 2 diabetes (T2DM) increases the risk for Alzheimer's disease (AD) but not for AD neuropathology. The association between T2DM and AD is assumed to be mediated through vascular mechanisms. However, insulin resistance (IR), the hallmark of T2DM, has been shown to associate with AD neuropathology and cognitive decline.Objective: To evaluate if midlife IR predicts late-life cognitive performance and cerebrovascular lesions (white matter hyperintensities and total vascular burden), and whether cerebrovascular lesions and brain amyloid load are associated with cognitive functioning.Methods: This exposure-to-control follow-up study examined 60 volunteers without dementia (mean age 70.9 years) with neurocognitive testing, brain 3T-MRI and amyloid-PET imaging. The volunteers were recruited from the Finnish Health 2000 survey (n = 6062) to attend follow-up examinations in 2014-2016 according to their insulin sensitivity in 2000 and their APOE genotype. The exposure group (n = 30) had IR in 2000 and the 30 controls had normal insulin sensitivity. There were 15 APOE epsilon 4 carriers per group. Statistical analyses were performed with multivariable linear models.Results: At follow-up the IR+group performed worse on executive functions (p = 0.02) and processing speed (p = 0.007) than the IR- group. The groups did not differ in cerebrovascular lesions. No associations were found between cerebrovascular lesions and neurocognitive test scores. Brain amyloid deposition associated with slower processing speed.Conclusion: Midlife IR predicted poorer executive functions and slower processing speed, but not cerebrovascular lesions. Brain amyloid deposition was associated with slower processing speed. The association between midlife IR and late-life cognition might not be mediated through cerebrovascular lesions measured here

    Fetal programming of neuropsychiatric disorders by maternal pregnancy depression: a systematic mini review

    Get PDF
    BACKGROUND: Maternal depression complicates a large proportion of pregnancies. Current evidence shows numerous harmful effects on the offspring. Reviews, which include depression, concluded that stress has harmful effects on the offspring's outcomes neuro-cognitive development, temperament traits, and mental disorders. OBJECTIVE: This mini review of recent studies, sought to narrow the scope of exposure and identify studies specifically assessing prenatal depression and offspring neuropsychiatric outcomes. STUDY ELIGIBILITY CRITERIA: The review included longitudinal, cohort, cross-sectional, clinical, quasi-experimental, epidemiological, or intervention study designs published in English from 2014 to 2018. PARTICIPANTS: Study populations included mother-child dyads, mother-father-child triads, mother-alternative caregiver-child triads, and family studies utilizing sibling comparisons. METHODS: We searched PubMED and Web of Science. Study inclusion and data extraction were based on standardized templates. The quality of evidence was assessed using the Newcastle-Ottawa Scale (NOS). RESULTS: Thirteen studies examining neuropsychiatric outcomes were included. We judged the evidence to be moderate to high quality. CONCLUSIONS: Our review supports that maternal prenatal depression is associated with neuropsychiatric adversities in children.Peer reviewe
    corecore