96 research outputs found

    Early Respiratory Management of Respiratory Distress Syndrome in Very Preterm Infants and Bronchopulmonary Dysplasia: A Case-Control Study

    Get PDF
    BACKGROUND: In the period immediately after birth, preterm infants are highly susceptible to lung injury. Early nasal continuous positive airway pressure (ENCPAP) is an attempt to avoid intubation and may minimize lung injury. In contrast, ENCPAP can fail, and at that time surfactant rescue can be less effective. OBJECTIVE: To compare the pulmonary clinical course and outcome of very preterm infants (gestational age 25–32 weeks) with respiratory distress syndrome (RDS) who started with ENCPAP and failed (ECF group), with a control group of infants matched for gestational age, who were directly intubated in the delivery room (DRI group). Primary outcome consisted of death during admission or bronchopulmonary dysplasia (BPD). RESULTS: 25 infants were included in the ECF group and 50 control infants matched for gestational age were included in the DRI group. Mean gestational age and birth weight in the ECF group were 29.7 weeks and 1,393 g and in the DRI group 29.1 weeks and 1,261 g (p = NS). The incidence of BPD was significantly lower in the ECF group than in the DRI group (4% vs. 35%; P<0.004; OR 12.6 (95% CI 1.6–101)). Neonatal mortality was similar in both groups (4%). The incidence of neonatal morbidities such as severe cerebral injury, patent ductus arteriosus, necrotizing enterocolitis and retinopathy of prematurity, was not significantly different between the two groups. CONCLUSION: A trial of ENCPAP at birth may reduce the incidence of BPD and does not seem to be detrimental in very preterm infants. Randomized controlled trials are needed to test whether early respiratory management of preterm infants with RDS plays an important role in the development of BPD

    Bronchoalveolar lavage fluid from preterm infants with chorioamnionitis inhibits alveolar epithelial repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm infants are highly susceptible to lung injury. While both chorioamnionitis and antenatal steroids induce lung maturation, chorioamnionitis is also associated with adverse lung development. We investigated the ability of bronchoalveolar lavage fluid (BALF) from ventilated preterm infants to restore alveolar epithelial integrity after injury <it>in vitro</it>, depending on whether or not they were exposed to chorioamnionitis or antenatal steroids. For this purpose, a translational model for alveolar epithelial repair was developed and characterised.</p> <p>Methods</p> <p>BALF was added to mechanically wounded monolayers of A549 cells. Wound closure was quantified over time and compared between preterm infants (gestational age < 32 wks) exposed or not exposed to chorioamnionitis and antenatal steroids (≥ 1 dose). Furthermore, keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF) were quantified in BALF, and their ability to induce alveolar epithelial repair was evaluated in the model.</p> <p>Results</p> <p>On day 0/1, BALF from infants exposed to antenatal steroids significantly increased epithelial repair (40.3 ± 35.5 vs. -6.3 ± 75.0% above control/mg protein), while chorioamnionitis decreased wound-healing capacity of BALF (-2.9 ± 87.1 vs. 40.2 ± 36.9% above control/mg protein). BALF from patients with chorioamnionitis contained less KGF (11 (0-27) vs. 0 (0-4) pg/ml) and less detectable VEGF (66 vs. 95%) on day 0. BALF levels of VEGF and KGF correlated with its ability to induce wound repair. Moreover, KGF stimulated epithelial repair dose-dependently, although the low levels in BALF suggest KGF is not a major modulator of BALF-induced wound repair. VEGF also stimulated alveolar epithelial repair, an effect that was blocked by addition of soluble VEGF receptor-1 (sVEGFr1/Flt-1). However, BALF-induced wound repair was not significantly affected by addition of sVEGFr1.</p> <p>Conclusion</p> <p>Antenatal steroids improve the ability of BALF derived from preterm infants to stimulate alveolar epithelial repair <it>in vitro</it>. Conversely, chorioamnionitis is associated with decreased wound-healing capacity of BALF. A definite role for KGF and VEGF in either process could not be established. Decreased ability to induce alveolar epithelial repair after injury may contribute to the association between chorioamnionitis and adverse lung development in mechanically ventilated preterm infants.</p

    Antenatal and postnatal corticosteroid and resuscitation induced lung injury in preterm sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Initiation of ventilation using high tidal volumes in preterm lambs causes lung injury and inflammation. Antenatal corticosteroids mature the lungs of preterm infants and postnatal corticosteroids are used to treat bronchopulmonary dysplasia.</p> <p>Objective</p> <p>To test if antenatal or postnatal corticosteroids would decrease resuscitation induced lung injury.</p> <p>Methods</p> <p>129 d gestational age lambs (n = 5-8/gp; term = 150 d) were operatively delivered and ventilated after exposure to either 1) no medication, 2) antenatal maternal IM Betamethasone 0.5 mg/kg 24 h prior to delivery, 3) 0.5 mg/kg Dexamethasone IV at delivery or 4) Cortisol 2 mg/kg IV at delivery. Lambs then were ventilated with no PEEP and escalating tidal volumes (<it>V</it><sub>T</sub>) to 15 mL/kg for 15 min and then given surfactant. The lambs were ventilated with <it>V</it><sub>T </sub>8 mL/kg and PEEP 5 cmH<sub>2</sub>0 for 2 h 45 min.</p> <p>Results</p> <p>High V<sub>T </sub>ventilation caused a deterioration of lung physiology, lung inflammation and injury. Antenatal betamethasone improved ventilation, decreased inflammatory cytokine mRNA expression and alveolar protein leak, but did not prevent neutrophil influx. Postnatal dexamethasone decreased pro-inflammatory cytokine expression, but had no beneficial effect on ventilation, and postnatal cortisol had no effect. Ventilation increased liver serum amyloid mRNA expression, which was unaffected by corticosteroids.</p> <p>Conclusions</p> <p>Antenatal betamethasone decreased lung injury without decreasing lung inflammatory cells or systemic acute phase responses. Postnatal dexamethasone or cortisol, at the doses tested, did not have important effects on lung function or injury, suggesting that corticosteroids given at birth will not decrease resuscitation mediated injury.</p

    Secretory phospholipase A2 pathway in various types of lung injury in neonates and infants: a multicentre translational study

    Get PDF
    Background Secretory phospholipase A2 (sPLA2) is a group of enzymes involved in lung tissue inflammation and surfactant catabolism. sPLA2 plays a role in adults affected by acute lung injury and seems a promising therapeutic target. Preliminary data allow foreseeing the importance of such enzyme in some critical respiratory diseases in neonates and infants, as well. Our study aim is to clarify the role of sPLA2 and its modulators in the pathogenesis and clinical severity of hyaline membrane disease, infection related respiratory failure, meconium aspiration syndrome and acute respiratory distress syndrome. sPLA2 genes will also be sequenced and possible genetic involvement will be analysed. Methods/Design Multicentre, international, translational study, including several paediatric and neonatal intensive care units and one coordinating laboratory. Babies affected by the above mentioned conditions will be enrolled: broncho-alveolar lavage fluid, serum and whole blood will be obtained at definite time-points during the disease course. Several clinical, respiratory and outcome data will be recorded. Laboratory researchers who perform the bench part of the study will be blinded to the clinical data. Discussion This study, thanks to its multicenter design, will clarify the role(s) of sPLA2 and its pathway in these diseases: sPLA2 might be the crossroad between inflammation and surfactant dysfunction. This may represent a crucial target for new anti-inflammatory therapies but also a novel approach to protect surfactant or spare it, improving alveolar stability, lung mechanics and gas exchange
    corecore