5,148 research outputs found

    Adjusting teaching loads to recognize the new reality of teaching

    Get PDF
    Teaching science courses seems to take more time these days. Contributing factors include an explosion of cognitive science and discipline-based education research, an increased awareness of student health and wellness, and lessons learned from pandemic teaching, which increased student support and technology use. Underpinning current and ongoing innovation is a commitment to ensure all students feel they belong in and can learn science. Investing time in teaching science more effectively also contributes to our own sense of belonging in a professional community of post-secondary educators. Evidence-informed teaching typically involves developing and delivering multiple low stakes assignments—including in-class activities—incorporating flexibility to create inclusive classrooms, and more complex course websites. These can require more preparation and administrative time and increased communication with students. Even if available, TA teams require training and often flexibility to accommodate graduate student needs. These responsibilities seem greater than what was expected years ago when a midterm and three lecture hours were sufficient. What seems to have been missed, or perhaps strategically ignored, by administrators is the negative impact on faculty workload and mental health. Here we’ll explore the impact of changing teaching strategies on the time it takes to deliver a course, and collaboratively generate a “how to” guide looking at ways of measuring and monitoring the impact of changes in science teaching on workload, as well as strategies for effectively advocating for updates to teaching workloads. Just as our teaching should create inclusive environments that are sensitive to mental health and wellbeing, so too should our work environments. Please bring an internet enabled device (e.g., smartphone) so that you can participate in polls and share ideas with online participants

    Human skeletal muscle nitrate store: influence of dietary nitrate supplementation and exercise

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordRodent skeletal muscle contains a large store of nitrate that can be augmented by the consumption of dietary nitrate. This muscle nitrate reservoir has been found to be an important source of nitrite and nitric oxide (NO), via its reduction by tissue xanthine oxidoreductases (XOR). To explore if this pathway is also active in human skeletal muscle during exercise, and if it is sensitive to local nitrate availability, we assessed exercise-induced changes in muscle nitrate and nitrite concentrations in young healthy humans, under baseline conditions and following dietary nitrate consumption. We found that baseline nitrate and nitrite concentrations were far higher in muscle than in plasma (∼4-fold and ∼29-fold, respectively), and that the consumption of a single bolus of dietary nitrate (12.8 mmol) significantly elevated nitrate concentration in both plasma (∼19 fold) and muscle (∼5 fold). Consistent with these observations, and with previous suggestions of active muscle nitrate transport, we present Western blot data to show significant expression of the active nitrate/nitrite transporter, sialin, in human skeletal muscle. Furthermore, we report an exercise-induced reduction in human muscle nitrate concentration (by ∼39%), but only in the presence of an increased muscle nitrate store. Our results indicate that human skeletal muscle nitrate stores are sensitive to dietary nitrate intake and may contribute to NO generation during exercise. Together, these findings suggest that skeletal muscle plays an important role in the transport, storage and metabolism of nitrate in humans. This article is protected by copyright. All rights reserved

    Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this record.We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and NO3--depleted beetroot juice as a placebo (SIT+PL); 2) SIT and NO3--rich beetroot juice (∼13 mmol NO3-/day; SIT+BR); or 3) no training and NO3--rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitraterich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.PepsiC

    Spin- and energy relaxation of hot electrons at GaAs surfaces

    Full text link
    The mechanisms for spin relaxation in semiconductors are reviewed, and the mechanism prevalent in p-doped semiconductors, namely spin relaxation due to the electron-hole exchange interaction, is presented in some depth. It is shown that the solution of Boltzmann-type kinetic equations allows one to obtain quantitative results for spin relaxation in semiconductors that go beyond the original Bir-Aronov-Pikus relaxation-rate approximation. Experimental results using surface sensitive two-photon photoemission techniques show that the spin relaxation-time of electrons in p-doped GaAs at a semiconductor/metal surface is several times longer than the corresponding bulk spin relaxation-times. A theoretical explanation of these results in terms of the reduced density of holes in the band-bending region at the surface is presented.Comment: 33 pages, 12 figures; earlier submission replaced by corrected and expanded version; eps figures now included in the tex

    Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains.

    Get PDF
    This is the author accepted manuscript. The final version is available from American Physiological Society via the DOI in this record.The lactate or gas exchange threshold (GET) and the critical power (CP) are closely associated with human exercise performance. We tested the hypothesis that the limit of tolerance (Tlim) during cycle exercise performed within the exercise intensity domains demarcated by GET and CP is linked to discrete muscle metabolic and neuromuscular responses. Eleven males performed a ramp incremental exercise test, 4-5 severe-intensity (SEV; >CP) constant-work-rate (CWR) tests until Tlim, a heavy-intensity (HVY; GET) CWR test until Tlim, and a moderate-intensity (MOD; 0.05) muscle metabolic milieu (i.e., low pH and [PCr] and high [lactate]) was attained at Tlim (~2-14 min) for all SEV exercise bouts. The muscle metabolic perturbation was greater at Tlim following SEV compared to HVY, and also following SEV and HVY compared to MOD (all P0.05). Neural drive to the VL increased during SEV (4±4%; P0.05). During SEV and HVY, but not MOD, the rates of change in M-wave amplitude and neural drive were correlated with changes in muscle metabolic ([PCr], [lactate]) and blood ionic/acid-base status ([lactate], [K(+)]) (P<0.05). The results of this study indicate that the metabolic and neuromuscular determinants of fatigue development differ according to the intensity domain in which the exercise is performed

    Prune belly syndrome in a set of twins, a family tragedy: Case report

    Get PDF
    We report prune belly syndrome, a rare congenital malformation, in a set of twins delivered to a young couple with a history of three previous first  trimester spontaneous abortions, discordant HIV seropositivity and antenatal ultrasound report that indicated renal abnormalities in only one of the twins. The challenges of management are discussed.Keywords: Prune Belly Syndrome, Twins, Nigeria, Management challenge

    Dynamics of the power-duration relationship during prolonged endurance exercise and influence of carbohydrate ingestion

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this recordWe tested the hypotheses that the parameters of the power-duration relationship, estimated as the end-test power (EP) and work done above EP (WEP) during a 3-min all out exercise test (3MT), would be reduced progressively following 40 min, 80 min and 2 h of heavy-intensity cycling, and that carbohydrate (CHO) ingestion would attenuate the reduction in EP and WEP. Sixteen participants completed a 3MT without prior exercise (control), immediately after 40 min, 80 min and 2-h of heavy-intensity exercise while consuming a placebo beverage, and also after 2-h of heavy-intensity exercise while consuming a CHO supplement (60 g/h CHO). There was no difference in EP measured without prior exercise (260 ± 37 W) compared to EP following 40 min (268 ± 39 W) or 80 min (260 ± 40 W) of heavy-intensity exercise; however, after 2-h, EP was 9% lower compared to control (236 ± 47 W; P<0.05). There was no difference in WEP measured without prior exercise (17.9 ± 3.3 kJ) compared to after 40 min of heavy-intensity exercise (16.1 ± 3.3 kJ), but WEP was lower (P<0.05) than control after 80 min (14.7 ± 2.9 kJ) and 2-h (13.8 ± 2.7 kJ). Compared to placebo, CHO ingestion negated the reduction of EP following 2-h of heavy-intensity exercise (254 ± 49 W) but had no effect on WEP (13.5 ± 3.4 kJ). These results reveal a different time course for the deterioration of EP and WEP during prolonged endurance exercise and indicate that EP is sensitive to CHO availability

    Structure-Function Relationships of the Mycobacterium tuberculosis Transcription Factor WhiB1

    Get PDF
    Background Members of the WhiB-like (Wbl) protein family possess iron-sulfur clusters and are implicated in the regulation of developmental processes in Actinomycetes. Mycobacterium tuberculosis possesses seven Wbl proteins. The [4Fe-4S] cluster of M. tuberculosis WhiB1 is relatively insensitive to O2 but very sensitive to nitric oxide (NO). Nitric oxide nitrosylates the WhiB1 iron-sulfur cluster and promotes DNA-binding; the apo-forms of WhiB1 also bind DNA. However, the molecular requirements for iron-sulfur cluster acquisition and for DNA-binding by WhiB1 are poorly characterized. Methods and Findings WhiB1 variants were created by site-directed mutagenesis and the abilities of the corresponding proteins to acquire an iron-sulfur cluster and/or bind to whiB1 promoter DNA were assessed. All four Cys residues (Cys9, 37, 40, and 46) in the N-terminal region of WhiB1 were required for incorporation of a [4Fe-4S] cluster, whereas a possible alternative cluster ligand Asp13 (by analogy with M. smegmatis WhiB2) was not. The C-terminal region of WhiB1 is predicted to house the DNA-binding domain of the protein consisting of a predicted β-turn (58GVWGG62) followed by two amino acid motifs (72KRRN75 and 78TKAR81) that are conserved in WhiB1 proteins. Gly residues (Gly58, 61 and 62) in the β-turn and positively-charged residues (Lys72, Arg73, Arg74, Lys79 and Arg81) in the downstream conserved regions were required for binding of WhiB1 DNA. Conclusions Site-directed mutagenesis of M. tuberculosis whiB1 and characterization of the corresponding proteins has been used to explore structure-function relationships of the NO-responsive transcription factor WhiB1. This showed that all four conserved Cys residues in the N-terminal region are required for incorporation of iron-sulfur clusters but not for DNA-binding. Analysis of variants with amino acid substitutions in the C-terminal region revealed the crucial roles played by a predicted β-turn and two conserved positively-charged motifs in facilitating DNA-binding, but not iron-sulfur cluster acquisition, by WhiB1
    corecore