333 research outputs found

    Lymphocyte subsets and the role of Th1/Th2 balance in stressed chronic pain patients

    Get PDF
    Background: The complex regional pain syndrome (CRPS) and fibromyalgia (FM) are chronic pain syndromes occurring in highly stressed individuals. Despite the known connection between the nervous system and immune cells, information on distribution of lymphocyte subsets under stress and pain conditions is limited. Methods: We performed a comparative study in 15 patients with CRPS type I, 22 patients with FM and 37 age- and sex-matched healthy controls and investigated the influence of pain and stress on lymphocyte number, subpopulations and the Th1/Th2 cytokine ratio in T lymphocytes. Results: Lymphocyte numbers did not differ between groups. Quantitative analyses of lymphocyte subpopulations showed a significant reduction of cytotoxic CD8+ lymphocytes in both CRPS (p < 0.01) and FM (p < 0.05) patients as compared with healthy controls. Additionally, CRPS patients were characterized by a lower percentage of IL-2-producing T cell subpopulations reflecting a diminished Th1 response in contrast to no changes in the Th2 cytokine profile. Conclusions: Future studies are warranted to answer whether such immunological changes play a pathogenetic role in CRPS and FM or merely reflect the consequences of a pain-induced neurohumoral stress response, and whether they contribute to immunosuppression in stressed chronic pain patients. Copyright (c) 2008 S. Karger AG, Basel

    Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B

    Get PDF
    Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone

    Generational status and duration of residence predict diabetes prevalence among Latinos: the California Men's Health Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes disproportionately affects Latinos. However, examining Latinos as one group obscures important intra-group differences. This study examined how generational status, duration of US residence, and language preference are associated with diabetes prevalence and to what extent these explain the higher prevalence among Latinos.</p> <p>Methods</p> <p>We determined nativity, duration of US residence, language preference, and diabetes prevalence among 11 817 Latino, 6109 black, and 52 184 white participants in the California Men's Health Study. We combined generational status and residence duration into a single migration status variable with levels: ≥ third generation; second generation; and immigrant living in the US for > 25, 16-25, 11-15, or ≤ 10 years. Language preference was defined as language in which the participant took the survey. Logistic regression models were specified to assess the associations of dependent variables with prevalent diabetes.</p> <p>Results</p> <p>Diabetes prevalence was 22%, 23%, and 11% among Latinos, blacks, and whites, respectively. In age-adjusted models, we observed a gradient of risk of diabetes by migration status among Latinos. Further adjustment for socioeconomic status, obesity and health behaviors only partially attenuated this gradient. Language preference was a weak predictor of prevalent diabetes in some models and not significant in others. In multivariate models, we found that odds of diabetes were higher among US-born Latinos than US-born blacks.</p> <p>Conclusion</p> <p>Generational status and residence duration were associated with diabetes prevalence among middle-aged Latino men in California. As the Latino population grows, the burden of diabetes-associated disease is likely to increase and demands public health attention.</p

    Electromagnetic Field Effect or Simply Stress? Effects of UMTS Exposure on Hippocampal Longterm Plasticity in the Context of Procedure Related Hormone Release

    Get PDF
    Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded

    Improving the Deaf community's access to prostate and testicular cancer information: a survey study

    Get PDF
    BACKGROUND: Members of the Deaf community face communication barriers to accessing health information. To resolve these inequalities, educational programs must be designed in the appropriate format and language to meet their needs. METHODS: Deaf men (102) were surveyed before, immediately following, and two months after viewing a 52-minute prostate and testicular cancer video in American Sign Language (ASL) with open text captioning and voice overlay. To provide the Deaf community with information equivalent to that available to the hearing community, the video addressed two cancer topics in depth. While the inclusion of two cancer topics lengthened the video, it was anticipated to reduce redundancy and encourage men of diverse ages to learn in a supportive, culturally aligned environment while also covering more topics within the partnership's limited budget. Survey data were analyzed to evaluate the video's impact on viewers' pre- and post-intervention understanding of prostate and testicular cancers, as well as respondents' satisfaction with the video, exposure to and use of early detection services, and sources of cancer information. RESULTS: From baseline to immediately post-intervention, participants' overall knowledge increased significantly, and this gain was maintained at the two-month follow-up. Men of diverse ages were successfully recruited, and this worked effectively as a support group. However, combining two complex cancer topics, in depth, in one video appeared to make it more difficult for participants to retain as many relevant details specific to each cancer. Participants related that there was so much information that they would need to watch the video more than once to understand each topic fully. When surveyed about their best sources of health information, participants ranked doctors first and showed a preference for active rather than passive methods of learning. CONCLUSION: After viewing this ASL video, participants showed significant increases in cancer understanding, and the effects remained significant at the two-month follow-up. However, to achieve maximum learning in a single training session, only one topic should be covered in future educational videos

    Endocrine Activity of Extraembryonic Membranes Extends beyond Placental Amniotes

    Get PDF
    BACKGROUND. During development, all amniotes (mammals, reptiles, and birds) form extraembryonic membranes, which regulate gas and water exchange, remove metabolic wastes, provide shock absorption, and transfer maternally derived nutrients. In viviparous (live-bearing) amniotes, both extraembryonic membranes and maternal uterine tissues contribute to the placenta, an endocrine organ that synthesizes, transports, and metabolizes hormones essential for development. Historically, endocrine properties of the placenta have been viewed as an innovation of placental amniotes. However, an endocrine role of extraembryonic membranes has not been investigated in oviparous (egg-laying) amniotes despite similarities in their basic structure, function, and shared evolutionary ancestry. In this study, we ask whether the oviparous chorioallantoic membrane (CAM) of chicken (Gallus gallus) has the capability to synthesize and receive signaling of progesterone, a major placental steroid hormone. METHODOLOGY/PRINCIPAL FINDINGS. We quantified mRNA expression of key steroidogenic enzymes involved in progesterone synthesis and found that 3β-hydroxysteroid dehydrogenase, which converts pregnenolone to progesterone exhibited a 464 fold increase in the CAM from day 8 to day 18 of embryonic development (F5, 68=89.282, p<0.0001). To further investigate progesterone synthesis, we performed explant culture and found that the CAM synthesizes progesterone in vitro in the presence of a steroid precursor. Finally, we quantified mRNA expression and performed protein immunolocalization of the progesterone receptor in the CAM. CONCLUSIONS/SIGNIFICANCE. Collectively, our data indicate that the chick CAM is steroidogenic and has the capability to both synthesize progesterone and receive progesterone signaling. These findings represent a paradigm shift in evolutionary reproductive biology by suggesting that endocrine activity of extraembryonic membranes is not a novel characteristic of placental amniotes. Rather, we hypothesize that these membranes may share an additional unifying characteristic, steroidogenesis, across amniotes at large.Sigma Xi (G20073141634396861); National Science Foundation (2008059161); UF-Howard Hughes G.A.T.O.R. Program; Howard Hughes Medical Institute Professorshi

    Model-Based Therapeutic Correction of Hypothalamic-Pituitary-Adrenal Axis Dysfunction

    Get PDF
    The hypothalamic-pituitary-adrenal (HPA) axis is a major system maintaining body homeostasis by regulating the neuroendocrine and sympathetic nervous systems as well modulating immune function. Recent work has shown that the complex dynamics of this system accommodate several stable steady states, one of which corresponds to the hypocortisol state observed in patients with chronic fatigue syndrome (CFS). At present these dynamics are not formally considered in the development of treatment strategies. Here we use model-based predictive control (MPC) methodology to estimate robust treatment courses for displacing the HPA axis from an abnormal hypocortisol steady state back to a healthy cortisol level. This approach was applied to a recent model of HPA axis dynamics incorporating glucocorticoid receptor kinetics. A candidate treatment that displays robust properties in the face of significant biological variability and measurement uncertainty requires that cortisol be further suppressed for a short period until adrenocorticotropic hormone levels exceed 30% of baseline. Treatment may then be discontinued, and the HPA axis will naturally progress to a stable attractor defined by normal hormone levels. Suppression of biologically available cortisol may be achieved through the use of binding proteins such as CBG and certain metabolizing enzymes, thus offering possible avenues for deployment in a clinical setting. Treatment strategies can therefore be designed that maximally exploit system dynamics to provide a robust response to treatment and ensure a positive outcome over a wide range of conditions. Perhaps most importantly, a treatment course involving further reduction in cortisol, even transient, is quite counterintuitive and challenges the conventional strategy of supplementing cortisol levels, an approach based on steady-state reasoning
    corecore