3,452 research outputs found

    Computational Study of Astroglial Calcium Homeostasis in a Semi-isolated Synaptic Cleft

    Get PDF

    On-chip communication for neuro-glia networks

    Get PDF

    SPANNER: A Self-Repairing Spiking Neural Network Hardware Architecture

    Get PDF

    A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability

    Get PDF
    <p><b>Postsynaptic activity due to synaptic and intrinsic currents</b>, triggered by (a) synaptic glutamate [Glu]<sub>syn</sub> (b-d) simulation with [Glu]<sub>ast,eq</sub> = 1.5mM, 5mM, and 10mM respectively, synaptic currents (I<sub>syn</sub>) combined AMPA- and NMDA-mediated currents in response to synaptic glutamate, membrane potential (V<sub>m</sub>) of postsynaptic neuron resulting from combination of I<sub>syn</sub> and voltage-gated currents (Na<sup>+</sup>, K<sup>+</sup> and leak). Prolonged time course of synaptic glutamate leads to enhanced synaptic currents (I<sub>syn</sub>) and higher frequency postsynaptic firing response (V<sub>m</sub> depolarisations) as [Glu]<sub>ast,eq</sub> increases.</p

    Self-Repairing Hardware with Astrocyte-Neuron Networks

    Get PDF

    Scalable Networks-on-Chip Interconnected Architecture for Astrocyte-Neuron Networks

    Get PDF

    A Computational Study of Astrocytic GABA Release at the Glutamatergic Synapse: EAAT-2 and GAT-3 Coupled Dynamics

    Get PDF
    Neurotransmitter dynamics within neuronal synapses can be controlled by astrocytes and reflect key contributors to neuronal activity. In particular, Glutamate (Glu) released by activated neurons is predominantly removed from the synaptic space by perisynaptic astrocytic transporters EAAT-2 (GLT-1). In previous work, we showed that the time course of Glu transport is affected by ionic concentration gradients either side of the astrocytic membrane and has the propensity for influencing postsynaptic neuronal excitability. Experimental findings co-localize GABA transporters GAT-3 with EAAT-2 on the perisynaptic astrocytic membrane. While these transporters are unlikely to facilitate the uptake of synaptic GABA, this paper presents simulation results which demonstrate the coupling of EAAT-2 and GAT-3, giving rise to the ionic-dependent reversed transport of GAT-3. The resulting efflux of GABA from the astrocyte to the synaptic space reflects an important astrocytic mechanism for modulation of hyperexcitability. Key results also illustrate an astrocytic-mediated modulation of synaptic neuronal excitation by released GABA at the glutamatergic synapse

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies
    • …
    corecore