1,676 research outputs found

    Hydrostatic pressure induced Dirac semimetal in black phosphorus

    Get PDF
    Motivated by recent experimental observation of an hydrostatic pressure induced transition from semiconductor to semimetal in black phosphorus [Chen et al. in arXiv:1504.00125], we present the first principles calculation on the pressure effect of the electronic structures of black phosphorus. It is found that the band crossover and reversal at the Z point occur around the critical pressure Pc1=1.23 Gpa, and the band inversion evolves into 4 twofold-degenerate Dirac cones around the Z point, suggesting a 3D Dirac semimetal. With further increasing pressure the Dirac cones in the Gamma-Z line move toward the Gamma point and evolve into two hole-type Fermi pockets, and those in the Z-M lines move toward the M point and evolve into 2 hole-type Fermi pockets up to P=4.0 Gpa. It demonstrates clearly that the Lifshitz transition occurs at Pc1P_{c1} from semiconductor to 3D Dirac semimetal protected by the nonsymmorphic space symmetry of bulk. This suggests the bright perspective of black phosphorus for optoelectronic and electronic devices due to its easy modulation by pressure.Comment: 7 pages, 9 figures, and 2 table

    Bacterial and Archaeal Specific-Predation in the North Atlantic Basin

    Get PDF
    Stable isotope probing (SIP) was used to track prokaryotic and eukaryotic carbon uptake along a meridional transect (Long. 52°W) in the North Atlantic to assess if 13C-resource partitioning between bacteria and archaea and 13C-labeled eukaryotic predators could be detected. One-liter SIP microcosms were amended with 13C-acetate or 13C-urea and incubated for 48 h. Our data indicated archaea often outcompeted bacteria for 13C-urea while both archaea and bacteria could incorporate 13C-acetate. This 13C label could also be tracked into eukaryotic microbes. The largest number of 13C-labeled eukaryotic OTUs, and the greatest percentage of eukaryotic 13C signal, were observed in conjunction with both archaeal and bacterial 13C incorporation, suggesting that most eukaryotic predators do not distinguish between archaeal and bacterial prey. However, other 13C-eukaryotic OTUs were exclusively associated with either 13C-archaeal or 13C-bacterial OTUs. These archaeal-specific and bacterial-specific 13C-eukaryotic OTUs were related to known bactivorous predators including Ancyromonas, Amastigomonas, Cafeteria, and Caecitellus. Our SIP findings suggest both resource partitioning between bacteria and TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota) archaea and selective predation by eukaryotic predators. Determining the equalizing mechanisms for co-existence in the marine environment can help map predator/prey interactions to better estimate carbon flow in the deep ocean

    Carbonated Drinks Impact Follicle Development, Expression of Ovarian FSHR and Serum Caspase-3 in Mice

    Get PDF
    Objectives: The present study aimed to assess the effects of Coca-Cola and Pepsi-Cola on the development of ovaries and follicles, and on the reproduction of animals

    Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance

    Get PDF
    FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated beta-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7TaxR cells. KIF20A depletion also renders MCF-7 and MCF-7TaxR cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance.Oncogene advance online publication, 11 May 2015; doi:10.1038/onc.2015.152.published_or_final_versio

    Ozone and PM(2.5) Exposure and Acute Pulmonary Health Effects: A Study of Hikers in the Great Smoky Mountains National Park

    Get PDF
    To address the lack of research on the pulmonary health effects of ozone and fine particulate matter (≤ 2.5 μm in aerodynamic diameter; PM(2.5)) on individuals who recreate in the Great Smoky Mountains National Park (USA) and to replicate a study performed at Mt. Washington, New Hampshire (USA), we conducted an observational study of adult (18–82 years of age) day hikers of the Charlies Bunion trail during 71 days of fall 2002 and summer 2003. Volunteer hikers performed pre- and posthike pulmonary function tests (spirometry), and we continuously monitored ambient O(3), PM(2.5), temperature, and relative humidity at the trailhead. Of the 817 hikers who participated, 354 (43%) met inclusion criteria (nonsmokers and no use of bronchodilators within 48 hr) and gave acceptable and reproducible spirometry. For these 354 hikers, we calculated the posthike percentage change in forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV(1)), FVC/FEV(1), peak expiratory flow, and mean flow rate between 25 and 75% of the FVC and regressed each separately against pollutant (O(3) or PM(2.5)) concentration, adjusting for age, sex, hours hiked, smoking status (former vs. never), history of asthma or wheeze symptoms, hike load, reaching the summit, and mean daily temperature. O(3) and PM(2.5) concentrations measured during the study were below the current federal standards, and we found no significant associations of acute changes in pulmonary function with either pollutant. These findings are contrasted with those in the Mt. Washington study to examine the hypothesis that pulmonary health effects are associated with exposure to O(3) and PM(2.5) in healthy adults engaged in moderate exercise

    Electron quantum metamaterials in van der Waals heterostructures

    Full text link
    In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques -- for example in the unique coloring of butterfly wings -- to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer sub-electron wavelength (as well as wavelength-scale) structuring of electronic matter, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures -- e.g., mechanical pick-up/transfer assembly -- atomic scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length-scales (such as electron wavelength, screening length, and electron mean free path). Yet electronic metamaterials promise far richer categories of behavior than those found in conventional optical metamaterial technologies. This is because unlike photons that scarcely interact with each other, electrons in subwavelength structured metamaterials are charged, and strongly interact. As a result, an enormous variety of emergent phenomena can be expected, and radically new classes of interacting quantum metamaterials designed

    Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk

    Get PDF
    Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency Portuguese Foundation for Science and Technology CRESC ALGARVE 2020 European Union (EU) 303745 Maratona da Saude Award DL 57/2016/CP1361/CT0042 SFRH/BPD/99502/2014 CBMR-UID/BIM/04773/2013 POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio

    Nucleotide Polymorphisms in the Canine Noggin Gene and Their Distribution Among Dog (Canis lupus familiaris) Breeds

    Get PDF
    Noggin (NOG) is an important regulator for the signaling of bone morphogenetic proteins. In this study, we sequenced the complete coding sequence of the canine NOG gene and characterized the nucleotide polymorphisms. The sequence length varied from 717 to 729 bp, depending on the number of a 6-bp tandem repeat unit (GGCGCG), an insertion that has not been observed in other mammalian NOG genes investigated to date. It results in extensions of (Gly–Ala)3–5 in the putative NOG protein. To survey the distribution of these tandem repeat polymorphisms, we analyzed 126 individuals in seven dog breeds. We identified only three alleles: (GGCGCG)3, (GGCGCG)4, and (GGCGCG)5. Although the allele frequencies were remarkably different among the breeds, the three alleles were present in all seven of the breeds and did not show any deviation from Hardy–Weinberg equilibrium

    Diverse Roles of Eph/ephrin Signaling in the Mouse Lens

    Get PDF
    Recent genetic studies show that the Eph/ephrin bidirectional signaling pathway is associated with both congenital and age-related cataracts in mice and humans. We have investigated the molecular mechanisms of cataractogenesis and the roles of ephrin-A5 and EphA2 in the lens. Ephrin-A5 knockout (-/-) mice often display anterior polar cataracts while EphA2(-/-) lenses show very mild cortical or nuclear cataracts at weaning age. The anterior polar cataract of ephrin-A5(-/-) lenses is correlated with multilayers of aberrant cells that express alpha smooth muscle actin, a marker for mesenchymal cells. Only select fiber cells are altered in ephrin-A5(-/-) lenses. Moreover, the disruption of membrane-associated β-catenin and E-cadherin junctions is observed in ephrin-A5(-/-) lens central epithelial cells. In contrast, EphA2(-/-) lenses display normal monolayer epithelium while disorganization is apparent in all lens fiber cells. Immunostaining of ephrin-A5 proteins, highly expressed in lens epithelial cells, were not colocalized with EphA2 proteins, mainly expressed in lens fiber cells. Besides the previously reported function of ephrin-A5 in lens fiber cells, this work suggests that ephrin-A5 regulates β-catenin signaling and E-cadherin to prevent lens anterior epithelial cells from undergoing the epithelial-to-mesenchymal transition while EphA2 is essential for controlling the organization of lens fiber cells through an unknown mechanism. Ephrin-A5 and EphA2 likely interacting with other members of Eph/ephrin family to play diverse functions in lens epithelial cells and/or fiber cells
    corecore