19 research outputs found

    Otolith geochemistry does not reflect dispersal history of clownfish larvae

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 29 (2010): 883-891, doi:10.1007/s00338-010-0652-z.Natural geochemical signatures in calcified structures are commonly employed to retrospectively estimate dispersal pathways of larval fish and invertebrates. However, the accuracy of the approach is generally untested due to the absence of individuals with known dispersal histories. We used genetic parentage analysis (genotyping) to divide 110 new recruits of the orange clownfish, Amphiprion percula, from Kimbe Island, Papua New Guinea, into two groups: “self-recruiters” spawned by parents on Kimbe Island and “immigrants” that had dispersed from distant reefs (>10km away). Analysis of daily increments in sagittal otoliths found no significant difference in PLDs or otolith growth rates between self-recruiting and immigrant larvae. We also quantified otolith Sr/Ca and Ba/Ca ratios during the larval phase using laser ablation inductively coupled plasma mass spectrometry. Again, we found no significant differences in larval profiles of either element between self-recruits and immigrants. Our results highlight the need for caution when interpreting otolith dispersal histories based on natural geochemical tags in the absence of water chemistry data or known-origin larvae with which to test the discriminatory ability of natural tags.Research was supported by the Australian Research Council, the Coral Reef Initiatives for the Pacific (CRISP), the Global Environmental Facility CRTR Connectivity Working Group, the Total Foundation, a National Science Foundation grant (#0424688) to SRT, and a National Science Foundation Graduate Research Fellowship to MLB

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: Processed data and code used in the analysis are accessible from the Zenodo Repository: 10.5281/zenodo.6885455Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.Bertarelli FoundationResearch EnglandMoore FoundationPackard FoundationInstituto Politecnico NacionalDarwin InitiativeGeorgia AquariumRolex Awards for EnterpriseWhitley Fund for Natur
    corecore