492 research outputs found
Towards Emotion Recognition: A Persistent Entropy Application
Emotion recognition and classification is a very active area of research. In
this paper, we present a first approach to emotion classification using
persistent entropy and support vector machines. A topology-based model is
applied to obtain a single real number from each raw signal. These data are
used as input of a support vector machine to classify signals into 8 different
emotions (calm, happy, sad, angry, fearful, disgust and surprised)
Measuring diet in primary school children aged 8-11 years: validation of the Child and Diet Evaluation Tool (CADET) with an emphasis on fruit and vegetable intake.
Background/Objectives:The Child And Diet Evaluation Tool (CADET) is a 24-h food diary that measures the nutrition intake of children aged 3-7 years, with a focus on fruit and vegetable consumption. Until now CADET has not been used to measure nutrient intake of children aged 8-11 years. To ensure that newly assigned portion sizes for this older age group were valid, participants were asked to complete the CADET diary (the school and home food diary) concurrently with a 1-day weighed record. Subjects/Methods:A total of 67 children with a mean age of 9.3 years (s.d.: ± 1.4, 51% girls) participated in the study. Total fruit and vegetable intake in grams and other nutrients were extracted to compare the mean intakes from the CADET diary and Weighed record using t-tests and Pearson's r correlations. Bland-Altman analysis was also conducted to assess the agreement between the two methods. Results: Correlations comparing the CADET diary to the weighed record were high for fruit, vegetables and combined fruit and vegetables (r=0.7). The results from the Bland-Altman plots revealed a mean difference of 54 g (95% confidence interval: -88, 152) for combined fruit and vegetables intake. CADET is the only tool recommended by the National Obesity Observatory that has been validated in a UK population and provides nutrient level data on children's diets. Conclusions:The results from this study conclude that CADET can provide high-quality nutrient data suitable for evaluating intervention studies now for children aged 3-11 years with a focus on fruit and vegetable intake
Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks?
In this review, we explore the concept of ‘double diabetes’, a combination of type 1 diabetes with features of insulin resistance and type 2 diabetes. After considering whether double diabetes is a useful concept, we discuss potential mechanisms of increased insulin resistance in type 1 diabetes before examining the extent to which double diabetes might increase the risk of cardiovascular disease (CVD). We then go on to consider the proposal that weight gain from intensive insulin regimens may be associated with increased CV risk factors in some patients with type 1 diabetes, and explore the complex relationships between weight gain, insulin resistance, glycaemic control and CV outcome. Important comparisons and contrasts between type 1 diabetes and type 2 diabetes are highlighted in terms of hepatic fat, fat partitioning and lipid profile, and how these may differ between type 1 diabetic patients with and without double diabetes. In so doing, we hope this work will stimulate much-needed research in this area and an improvement in clinical practice
A Tale of Two Current Sheets
I outline a new model of particle acceleration in the current sheet
separating the closed from the open field lines in the force-free model of
pulsar magnetospheres, based on reconnection at the light cylinder and
"auroral" acceleration occurring in the return current channel that connects
the light cylinder to the neutron star surface. I discuss recent studies of
Pulsar Wind Nebulae, which find that pair outflow rates in excess of those
predicted by existing theories of pair creation occur, and use those results to
point out that dissipation of the magnetic field in a pulsar's wind upstream of
the termination shock is restored to life as a viable model for the solution of
the "" problem as a consequence of the lower wind 4-velocity implied by
the larger mass loading.Comment: 17 pages, 6 figures, Invited Review, Proceedings of the "ICREA
Workshop on The High-Energy Emission from Pulsars and their Systems", Sant
Cugat, Spain, April 12-16, 201
The Role of Auditory Features Within Slot-Themed Social Casino Games and Online Slot Machine Games
Over the last few years playing social casino games has become a popular entertainment activity. Social casino games are offered via social media platforms and mobile apps and resemble gambling activities. However, social casino games are not classified as gambling as they can be played for free, outcomes may not be determined by chance, and players receive no monetary payouts. Social casino games appear to be somewhat similar to online gambling activities in terms of their visual and auditory features, but to date little research has investigated the cross over between these games. This study examines the auditory features of slot-themed social casino games and online slot machine games using a case study design. An example of each game type was played on three separate occasions during which, the auditory features (i.e., music, speech, sound effects, and the absence of sound) within the games were logged. The online slot-themed game was played in demo mode. This is the first study to provide a qualitative account of the role of auditory features within a slot-themed social casino game and an online slot machine game. Our results found many similarities between how sound is utilised within the two games. Therefore the sounds within these games may serve functions including: setting the scene for gaming, creating an image, demarcating space, interacting with visual features, prompting players to act, communicating achievements to players, providing reinforcement, heightening player emotions and the gaming experience. As a result this may reduce the ability of players to make a clear distinction between these two activities, which may facilitate migration between game
SGLT inhibitor adjunct therapy in type 1 diabetes
Non-insulin adjunct therapies in type 1 diabetes have been proposed as a means of improving glycaemic control and reducing risk of hypoglycaemia. Evidence to support this approach is, however, scant and few pharmacological agents have proved effective enough to become part of routine clinical care. Recent short-term Phase II trials and 24 week Phase III trials provide initial support for the use of sodium–glucose cotransporter (SGLT) inhibitors in type 1 diabetes. Two international, multicentre, randomised, controlled clinical trials, Dapagliflozin Evaluation in Patients with Inadequately Controlled Type 1 Diabetes (DEPICT-1) and inTandem3, have reported that SGLT inhibition with dapagliflozin and sotagliflozin, respectively, confer additional benefits in terms of a 5–6 mmol/mol (0.4–0.5%) reduction in HbA1c accompanied by weight loss and reductions in total daily insulin doses. The reduction in HbA1c does not come with a significantly increased risk of hypoglycaemia but does carry an increased risk of diabetic ketoacidosis and mycotic infections. These results suggest that SGLT inhibition will have a place in the management of type 1 diabetes. Longer-term clinical trials (≥52 weeks) and observational cohort studies are needed to determine any additional benefits or adverse effects of this adjunct therapy and to determine which group of patients may benefit most from this approach. In addition, use of SGLT inhibitors in routine type 1 diabetes care will require specific patient and healthcare professional educational packages to ensure patient safety and to minimise risk
Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes
Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime
X-ray emission from isolated neutron stars
X-ray emission is a common feature of all varieties of isolated neutron stars
(INS) and, thanks to the advent of sensitive instruments with good
spectroscopic, timing, and imaging capabilities, X-ray observations have become
an essential tool in the study of these objects. Non-thermal X-rays from young,
energetic radio pulsars have been detected since the beginning of X-ray
astronomy, and the long-sought thermal emission from cooling neutron star's
surfaces can now be studied in detail in many pulsars spanning different ages,
magnetic fields, and, possibly, surface compositions. In addition, other
different manifestations of INS have been discovered with X-ray observations.
These new classes of high-energy sources, comprising the nearby X-ray Dim
Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the
Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to
several tens of confirmed members, plus many candidates, and allow us to study
a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant
Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from
pulsars and their systems", held in April, 201
Low potency toxins reveal dense interaction networks in metabolism
Background
The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs.
Results
Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function.
Conclusions
The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
Recommended from our members
Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake
To quantify the effects of recent and potential future decreases in surface wind speeds on lake thermal stratification, we apply the one-dimensional process-based model MyLake to a large, shallow, polymictic lake, Võrtsjärv. The model is validated for a 3-year period and run separately for 28 years using long-term daily atmospheric forcing data from a nearby meteorological station. Model simulations show exceptionally good agreement with observed surface and bottom water temperatures during the 3-year period. Similarly, simulated surface water temperatures for 28 years show remarkably good agreement with long-term in situ water temperatures. Sensitivity analysis demonstrates that decreasing wind speeds has resulted in substantial changes in stratification dynamics since 1982, while increasing air temperatures during the same period had a negligible effect. Atmospheric stilling is a phenomenon observed globally, and in addition to recent increases in surface air temperature, needs to be considered when evaluating the influence of climate change on lake ecosystems
- …
