3,318 research outputs found

    Non-strange partner of strangeonium-like state Y(2175)

    Full text link
    Inspired by the observed Y(2175) state, we predict its non-strange partner Y(1915), which has a resonance structure with mass around 1915 MeV and width about 317354317\sim 354 MeV. Experimental search for Y(1915) is proposed by analyzing the ωf0(980)\omega f_0(980) or ωππ\omega \pi\pi invariant mass spectrum of the e+eωf0(980),ωππe^+e^-\to \omega f_0(980), \omega \pi\pi and J/ψηωf0(980)J/\psi\to \eta \omega f_0(980) processes, which are accessible at Belle, BaBar, BESIII and forthcoming BelleII. Considering similarity between two families, the comparison of the mass spectra of ω\omega and ϕ\phi families can provide important information on the 1D state of ϕ\phi family, ϕ(1910)\phi(1910), which has a very broad resonance structure with mass around 1910 MeV regarded as the strangeonium partner of ω(1650)\omega(1650). This also answers the question why the 1D state ϕ(1910)\phi(1910) is still missing in experiment. This is supported by our former study on the properties of Y(2175), which explains Y(2175) as the 2D strangeonium because our theoretical total width is comparable with the Belle data.Comment: 5 pages, 5 figures. More discussions and numerical results added. Typos correcte

    A preliminary study of photometric redshifts based on the Wide Field Survey Telescope

    Full text link
    The Wide Field Survey Telescope (WFST) is a dedicated time-domain multi-band (uu, gg, rr, ii, and zz) photometric survey facility under construction. In this paper, we present a preliminary study that assesses the quality of photometric redshifts based on WFST by utilizing mock observations derived with the galaxy catalog in the COSMOS/UltraVISTA field. We apply the template fitting technique to estimate photometric redshifts by using the ZEBRA photometric-redshift code and adopting a modified set of adaptive templates. We evaluate the bias (median relative offset between the output photometric redshifts and input redshifts), normalized median absolute deviation (σNMAD\sigma_{\rm NMAD}) and outlier fraction (foutlierf_{\rm outlier}) of photometric redshifts in two typical WFST observational cases, the single 30-second exposure observations (hereafter shallow mode) and co-added 50-minute exposure observations (hereafter deep mode). We find bias\la0.006, \sigma_{\rm NMAD}\la0.03, and f_{\rm outlier}\la5\% in the shallow mode and bias0.005\approx 0.005, σNMAD0.06\sigma_{\rm NMAD}\approx 0.06, and foutlier17%f_{\rm outlier}\approx 17\%--27%27\% in the deep mode, respectively, under various lunar phases. Combining the WFST mock observational data with that from the upcoming CSST and Euclid surveys, we demonstrate that the zphotz_{\rm phot} results can be significantly improved, with foutlier1%f_{\rm outlier}\approx 1\% and σNMAD0.02\sigma_{\rm NMAD}\approx 0.02.Comment: 20 pages, 13 figures. Accepted for publication in Research in Astronomy and Astrophysics (RAA

    BET Bromodomain Inhibition Triggers Apoptosis of NF1-Associated Malignant Peripheral Nerve Sheath Tumors through Bim Induction

    Get PDF
    SummaryMalignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that develop sporadically or in neurofibromatosis type 1 (NF1) patients. There is no effective treatment for MPNSTs and they are typically fatal. To gain insights into MPNST pathogenesis, we utilized an MPNST mouse model that allowed us to study the evolution of these tumors at the transcriptome level. Strikingly, in MPNSTs we found upregulation of a chromatin regulator, Brd4, and show that BRD4 inhibition profoundly suppresses both growth and tumorigenesis. Our findings reveal roles for BET bromodomains in MPNST development and report a mechanism by which bromodomain inhibition induces apoptosis through induction of proapoptotic Bim, which may represent a paradigm shift in therapy for MPNST patients. Moreover, these findings indicate epigenetic mechanisms underlying the balance of anti- and proapoptotic molecules and that bromodomain inhibition can shift this balance in favor of cancer cell apoptosis

    Differentiation of murine colon pathology by optical and mechanical contrast using optical coherence tomography and elastography

    Get PDF
    Colon pathologies including colon cancer and ulcerative colitis afflict hundreds of thousands of people in the United States. Clinical detection of colon diseases is generally performed through colonoscopy. However, these methods usually lack the sensitivity or resolution to detect diseased tissue at early stages. Even high resolution optical techniques such as confocal microscopy and optical coherence tomography (OCT) rely on structural features to detect anomalies in tissue, which may not be sufficient for early disease detection. If changes in tissue biomechanical properties precede morphological changes in tissue physiology, then mechanical contrast would enable earlier detection of disease. In this work, we utilized optical coherence elastography (OCE) to assess the biomechanical properties of healthy, cancerous, and colitis tissue. Additionally, the optical properties of each sample were also assessed as a secondary feature to distinguish tissue types. The Young’s modulus, as measured by the propagation of an elastic wave, of the healthy, cancerous, and colitis tissue was 10.8 ± 1.0 kPa, 7.12 ± 1.0 kPa, and 5.1 ± 0.1 kPa, respectively. The variations in the OCT signal intensity over depth, as measured by the slope-removed standard deviation of each A-scan was 5.8 ±.0.3 dB, 5.1 ± 0.4 dB, and 5.5 ± 0.2 dB for healthy, cancerous, and colitis tissue, respectively. This work shows OCT structural imaging combined with OCE can detect minute changes in colon tissue optical scattering and elastic properties, which may be useful for detection various colon diseases, such as colitis and colon cancer
    corecore