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SUMMARY

Malignant peripheral nerve sheath tumors (MPNSTs)
are highly aggressive sarcomas that develop sporad-
ically or in neurofibromatosis type 1 (NF1) patients.
There is no effective treatment for MPNSTs and
they are typically fatal. To gain insights into MPNST
pathogenesis, we utilized an MPNST mouse model
that allowed us to study the evolution of these tumors
at the transcriptome level. Strikingly, in MPNSTs we
found upregulation of a chromatin regulator, Brd4,
and show that BRD4 inhibition profoundly sup-
presses both growth and tumorigenesis. Our find-
ings reveal roles for BET bromodomains in MPNST
development and report a mechanism by which
bromodomain inhibition induces apoptosis through
induction of proapoptotic Bim, which may repre-
sent a paradigm shift in therapy for MPNST
patients. Moreover, these findings indicate epige-
netic mechanisms underlying the balance of anti-
and proapoptotic molecules and that bromodomain
inhibition can shift this balance in favor of cancer
cell apoptosis.

INTRODUCTION

Neurofibromatosis type 1 (NF1) is one of the most common hu-

man genetic disorders of the nervous system and affects one in

3,500 individuals around the world regardless of ethnicity and

gender (Wallace et al., 1990). NF1 manifests through inheritance

or sporadic mutation of the Nf1 tumor suppressor gene, a nega-

tive regulator of oncogenic p21-RAS, which predisposes NF1

patients to a wide spectrum of symptoms including develop-

mental, neurological, dermatological, and cardiovascular

defects and tumor development (Le and Parada, 2007; Martin

et al., 1990). Although NF1 patients are susceptible to devel-
oping various neoplasms (juvenile myelomonocytic leukemia,

optic glioma, astrocytoma, rhabdomyosarcoma), the most

common occurring are benign neurofibromas, which can be

stratified into two subgroups: plexiform and dermal (Albers and

Gutmann, 2009; Bajenaru et al., 2003; Le and Parada, 2007;

Shannon et al., 1992). Plexiform neurofibromas can progress

to malignant sarcomas known as malignant peripheral nerve

sheath tumors (MPNSTs), which account for 10% of all soft

tissue sarcomas (King et al., 2000). They are highly aggressive,

incurable through conventional chemotherapy or surgical

resection, and a leading cause of mortality in the NF1 patient

population (Duong et al., 2011). Although significant progress

in understanding NF1 tumor development has been made,

surgery remains the standard of care for MPNST patients, and

prognosis remains bleak (Zou et al., 2009).

Neurofibroma progression to MPNST in NF1 patients is asso-

ciated with additional genetic changes including amplification/

overexpression of oncogenic receptor tyrosine kinases (i.e.,

EGFR, PDGFR, MET) or growth factors (i.e., neuregulin-1, hepa-

tocyte growth factor) and loss of tumor suppressors Ink4a, Pten,

or P53 (the latter being the most common) (Cichowski et al.,

1999; Endo et al., 2011; Gregorian et al., 2009; Huijbregts

et al., 2003; Joseph et al., 2008; Keng et al., 2012; Ling et al.,

2005; Perrone et al., 2009; Perry et al., 2002; Torres et al.,

2011; Vogel et al., 1999). Modeling these genetic changes along-

side loss of Nf1 in mice has been reported to promote MPNST

development, which confirms their contributions to MPNST

pathogenesis. This has led to the identification of therapeutic

targets regulating the cell cycle, thus allowing for inhibition of

proliferation, but eventual resistance or tumor burden are likely

to hinder the efficacy of such agents (Albritton et al., 2006;

Jessen et al., 2013; Johannessen et al., 2008; Mo et al., 2013;

Patel et al., 2012; Wu et al., 2013a). Selective inhibition of both

proliferation and survival may offer MPNST patients a better

prognosis. However, limited capability to culture human

MPNSTs and lack of a model system that permits genome-

wide analysis or functional interrogation of MPNSTs and their

pre-tumorigenic counterparts have hindered the elucidation of
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survival dependencies in MPNSTs. We and others have

developed mouse models in which genetic loss of tumor sup-

pressorsNf1 and P53 leads to spontaneous initiation of MPNSTs

(Cichowski et al., 1999; Vogel et al., 1999) (L.Q.L., unpublished

data). More recently, we identified skin-derived precursors

(SKPs) with Nf1 deficiency to be a cell of origin for dermal neuro-

fibromas (Le et al., 2009).

Serendipitously, we found that Nf1-deficient SKPs are also

capable of giving rise to plexiform neurofibromas when trans-

planted into a nerve, and further loss of P53 readily allows for

malignant transformation into MPNSTs with histological and

molecular features consistent with human MPNSTs (Mo et al.,

2013; Chau et al., 2013). This MPNST mouse model affords us

the opportunity to monitor the evolution of these tumors from

stem cell to benign neurofibroma to MPNST. Here, we utilized

our SKP-derived MPNST model to study the evolution of these

tumors by comparative transcriptome analysis of SKP-derived

MPNSTs (sMPNSTs) and their pretumorigenic ancestors,

Nf1;P53-deficient SKPs (NP-SKPs), and identify upregulation

of Brd4 in MPNSTs.

We investigated the role of BRD4 in MPNST pathogenesis.

BRD4 is a BET (bromodomain and extraterminal) family member

that contains two bromodomains in tandem, which permit

recognition and binding to acetylated histones, and subsequent

recruitment of cofactors (including pTEFb) for RNA polymerase-

II-dependent transcription elongation (Dey et al., 2003; Jang

et al., 2005;Wu et al., 2013b; Yang et al., 2005). BRD4 is reported

to regulate expression of mitotic genes required for cell-cycle

progression, and its fusion to NUT (nuclear protein in testis)

has been implicated in the pathogenesis of NUT-midline carci-

nomas (Filippakopoulos et al., 2010; Mochizuki et al., 2008;

Yang et al., 2008). The development of selective small molecule

inhibitors of BRD4, called JQ1, I-BET 151, and CPI203, has

allowed for selective inhibition of C-Myc expression and self-

renewal in hematopoietic malignancies (acute myeloid leukemia,

mixed lineage leukemia, multiple myeloma, and T cell acute

lymphoblastic leukemia), thus establishing JQ1 or I-BET 151-

mediated inhibition of BRD4 as therapeutic strategy to disable

oncogenic C-Myc (Dawson et al., 2011; Delmore et al., 2011;

King et al., 2013; Zuber et al., 2011). Recent evidence indicates

that BRD4 and Mediator together occupy mostly active genes in

multiple myeloma cells, and at high concentrations at superen-

hancers for key oncogenic drivers or cell identity genes (Lovén

et al., 2013). These superenhancer-regulated genes have been

shown to be highly sensitive to levels of BRD4 or its cofactors,

such that selective inhibition with JQ1 leads to substantial sup-

pression of their transcription elongation, whereas active genes

with typical enhancers are less affected (Lovén et al., 2013). All

together, these findings suggest that the concentration/levels

of BRD4 and its cofactors are important for the maintaining

high levels of cancer cell specific oncogenes, thus indicating a

general strategy for identifying dependencies in diverse cancer

types (Lovén et al., 2013). Whether the levels of BRD4 and its

cofactors are important for solid tumor initiation and progres-

sion, including MPNSTs, remains unknown.

Here, we show that increased levels of BRD4 accompany the

progression of pretumorigenic NP-SKPs to MPNSTs in vivo.

Genetic and pharmacological inhibition of BRD4 substantially
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inhibits both in vitro growth and in vivo tumorigenesis of NF1-

associated MPNSTs. Transcriptome and genomic occupancy

analysis of BRD4 inhibition in MPNSTs reveals downregulation

of Cyclin D1 and Bcl2 expression along with derepression of

Bim transcription, which we demonstrate to suppress tumori-

genesis and initiate apoptosis of MPNSTs. Collectively, our

findings reveal a role for BET bromodomains in maintaining the

growth and survival of NF1-associated MPNSTs and identify a

therapeutic strategy for selective inhibition of MPNST tumori-

genesis and survival, which may serve to improve the prognosis

for NF1-associated MPNST patients.

RESULTS

Transcriptome Analysis of Nf1�/� P53�/� SKP
Progression to MPNST Identifies Upregulation of Brd4
Previously, we established a mouse model of dermal neurofi-

broma (dNF) where we demonstrate that Nf1-deficient SKPs

can give rise to dNFs, which is contingent on their local micro-

environment (Le et al., 2009). In the course of these SKP and

neurofibroma studies, we serendipitously found that we could

faithfully generate MPNSTs from SKPs doubly deficient in Nf1

and P53 (NP-SKPs) (Mo et al., 2013; Chau et al., 2013). This

finding creates a powerful MPNST model that affords us the

opportunity to genetically monitor the evolution of MPNSTs

from their pretumorigenic precursors (NP-SKPs). These SKP-

derivedMPNSTs (sMPNSTs) were found to have a robust poten-

tial for giving rise to tumors when either transplanted as tumor

fragments or as few as 10,000 cells, whereas their ancestors

(NP-SKPs) required at least 100,000 cells and longer time in vivo

to become sMPNSTs. These observations led us to hypothesize

that dual loss of tumor suppressors Nf1 and P53 is required but

not sufficient for progression of NP-SKPs to sMPNSTs. We

envisioned that further genetic or epigenetic changes, themicro-

environment, cells of origin, or multiple factors are required for

progression to MPNST. Although these complexities pose

challenges to addressing our hypothesis, we reasoned that

underlying transcriptome changes would allow us to molecularly

understand tumor initiation, maintenance, and progression regu-

lated in this model system. Advantageously, our MPNST mouse

model allows us to take our transcriptome insights and system-

atically and rapidly determine how MPNST tumorigenesis is

regulated. Therefore, we compared the gene expression profiles

of sMPNST tumors to their pretumorigenic ancestors (NP-SKPs)

via microarray analysis to understand what transcriptome

changes occur after MPNST tumor initiation/progression (Fig-

ure 1A). As anticipated, comparative microarray analysis

indicates that sMPNST tumors had numerous genes up- and

downregulated when compared to their ancestors (NP-SKPs).

However, we found substantially more genes upregulated, and

with greater magnitude of fold change expression (Figure 1B),

which was associated with upregulation of RNA polymerase II

(RNAP II) regulator Brd4 (Figure 1C). Quantitative RT-PCR and

western blot analyses confirm these findings (Figures 1D and

1E). Consistent with these data, we also observed abundant

expression of BRD4 in human MPNST primary tissue and xeno-

graft (Figure S1). BRD4 along with Mediator and pTEFb are all

implicated in promoting RNA polymerase-II (RNAP II)-dependent



Figure 1. Identification of Brd4 Upregulation and Roles in MPNSTs

(A) Diagram of microarray experiment for transcriptome analysis.

(B) Bar graph representation of the absolute fold change in expression of all genes from microarray experiment with fold change of R2.

(C) Pictorial representation of positive regulators of transcriptional elongation by RNA polymerase II and identification of Brd4 upregulation in MPNSTs (from

microarray experiment).

(D and E) qRT-PCR and western blot analysis of MPNST cells and precursors for expression of Brd4.

(F and G) qRT-PCR and western blot analysis for Brd4 knockdown in sMPNST-pTripz cells with or without doxycycline (Dox).

(H) Effect of Brd4 shRNA induction on MPNST cell growth/viability using ATP CellTiter Glo assay.

All statistics are represented as the mean ± SEM (*p % 0.05, **p % 0.01, ***p % 0.001, ***p % 0.0001).
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transcriptional elongation (Donner et al., 2010; Jang et al., 2005;

Wu and Chiang, 2007) (Figure 1C). BRD4 has been previously

implicated in cancer biology (Dawson et al., 2011; Delmore

et al., 2011; Filippakopoulos et al., 2010; Firestein et al., 2008;

Lovén et al., 2013; Zuber et al., 2011) and is currently amenable

to pharmacological inhibition through small molecule bromodo-

main inhibitor JQ1 (Filippakopoulos et al., 2010), which may

present a novel therapeutic modality for treating NF1-associated

MPNSTs. Thus, we focused on elucidating the role of BRD4 in

MPNSTs.

Brd4 Is Critical for Growth and Tumorigenic Capacity
of MPNSTs
We sought to dissect the function of BRD4 in MPNSTs by

employing a doxycycline (Dox)-inducible small hairpin RNA

(shRNA) system to acutely knockdown Brd4 mRNA levels.

sMPNST cells were transduced with lentivirus harboring either

scrambled shRNA (pTripz-shCONTROL) or Brd4 shRNAs

(pTripz-shBrd4.523 or pTripz-shBrd4.552), and then treated

with puromycin to select for stably infected cells. Treatment of

these cells with doxycycline to induce shRNA expression re-

veals >80% reduction of Brd4 mRNA levels via Brd4 shRNAs

compared to scrambled shRNA (shCONTROL) induction, which

is consistent with protein levels (Figures 1F and 1G). To evaluate

the effect of acute depletion of Brd4 on sMPNST cellular growth,

we evaluated ATP levels as a surrogate for cell numbers before

and after acute knockdown of Brd4 and observed significantly

reduced growth upon Brd4 shRNA induction with doxycycline

(Figure 1H).

To study the influence of BRD4 on the tumorigenic capacity of

MPNST cells, we subcutaneously injected pTripz-shCONTROL

and pTripz-shBrd4 sMPNST cells (Luciferase tagged) into nude

mice. Two days later, both scrambled and Brd4 shRNAs were

turned on in sMPNST allografts by administration of doxycycline

(1 mg/ml) through drinking water of the mice. By 30 days of

shRNA induction in vivo, we found that Brd4 shRNA-sMPNST

cells had significantly delayed tumor burden/progression

compared to control as indicated by periodic measurements of

tumor bioluminescence and volume and final weight of excised

tumors (Figures 2A–2E). Remarkably, induction of Brd4 shRNA

expression in established tumors (30 days after subcutaneous

implantation) halted sMPNST tumor progression/growth when

compared to shCONTROL sMPNST tumors (Figures 2F and

2G). Western blot analysis of these tumors indicates that these

findings are consistent with reduced BRD4 protein levels in

shBrd4+Dox tumors (Figure 2H). Through molecular analysis of

tumor proliferation, we found that shBrd4 tumors had signifi-

cantly fewer bromodeoxyuridine (BrdU)-positive cells than

shCONTROL tumors (Figures 2I and 2J). All together, these

data indicate an important role for BRD4 in maintaining tumori-

genic capacity of MPNSTs in vivo.

Pharmacological Inhibition of Brd4 Suppresses MPNST
Growth and Tumorigenesis
The remarkable inhibition of MPNST tumorigenesis throughBrd4

knockdown prompted us to evaluate the effect of inhibiting

BRD4 with small molecule BET bromodomain inhibitor JQ1

(Filippakopoulos et al., 2010). We tested the effect of JQ1 on
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pretumorigenic NP-SKPs, sMPNST cells, and cis MPNST cells

(derived from spontaneous MPNST arising in cis Nf1+/� P53+/�

mice) (Mo et al., 2013; Vogel et al., 1999). All MPNST cells and

NP-SKPs had decreased cellular viability/growth in a JQ1

dose-dependent manner with IC50 values less than 400 nM,

whereas SKPs (both wild-type and Nf1 null) were relatively

unaffected (Figure 3A). These data may suggest a role for

BRD4 in maintaining in vitro growth and survival signaling prop-

agated by loss of both Nf1 and P53 in MPNSTs and their pretu-

morigenic precursors (NP-SKPs). Collectively, these promising

findings suggest that JQ1 may have important therapeutic value

in the treatment of MPNSTs.

In that regard, to investigate the therapeutic efficacy of

JQ1 on MPNST tumor progression, we generated palpable

(50 mm3 average) sMPNST allografts (luciferase expressing) in

14 nude mice (two tumors per mouse). Prior to drug administra-

tion, we measured tumor volume and bioluminescence to sepa-

rate tumor-bearing mice into two groups (14 tumors per group),

in which tumor size and mouse gender/weight are equally rep-

resented (Figure 3B). Mice were treated with either vehicle or

JQ1 for 15 days and then sacrificed. During this treatment

period, we found that growth of all JQ1-treated tumors (n =

14) had been severely blunted compared to vehicle-treated

tumors (n = 14) as indicated by delayed progression of tumor

bioluminescence and volume (Figures 3C and 3D). Interestingly,

during the course of the experiment, we observed sMPNST

tumor regression in JQ1-treated mice both visually and

through bioluminescence imaging (Figure 3E). Remarkably, we

observed 50% to near complete regression of tumor volume

in as little as 10 days of JQ1 treatment, which resulted in

much smaller tumors compared to vehicle tumors (Figures 3F

and 3G). Moreover, analysis of tumor proliferation revealed

significantly fewer BrdU-positive cells in JQ1-treated sMPNST

allografts compared to vehicle (Figures 3H and 3I). Importantly,

we observed no significant changes in body weight nor behavior

of mice during JQ1 treatment (data not shown), which is consis-

tent with JQ1 tolerance observed in published mouse studies

(Cheng et al., 2013; Delmore et al., 2011; Filippakopoulos

et al., 2010; Zuber et al., 2011). These data strongly suggest

great therapeutic potential for JQ1 in the treatment of NF1-

associated MPNSTs.

Brd4 Regulates MPNST Cell-Cycle Progression and
Cyclin D1 Expression
To gain insight into the mechanism of action for BRD4 in

MPNST tumorigenesis, we first evaluated the effect of genetic

and pharmacological inhibition of BRD4 on sMPNST cell num-

ber. On average, we found that induction of Brd4 shRNAs led

to 60%–65% reduction in cell number after 5 days in culture

compared to cells without induction or shCONTROL cells (Fig-

ure 4A). We observed a similar effect on sMPNST cells

treated 4 days with JQ1 (Figure 4B). These data suggested

inhibition of MPNST proliferation through BRD4 inhibition.

Indeed, we found that BRD4 inhibition restrains MPNST cell-

cycle progression. Analysis of proliferation via BrdU incorpora-

tion and DNA content by flow cytometry led us to find that

BRD4 depletion leads to significant reduction of BrdU incorpo-

ration, a predominant increase in percentage of cells in G1



Figure 2. BRD4 Maintains Tumorigenic Capacity of MPNSTs In Vivo

(A) Growth of shCONTROL and shBrd4.552 sMPNST tumors relative to ‘‘day 2’’ value. Values represent luminescence counts (tumor bioluminescence imaging,

n = 6 tumors per group).

(B) Representative pictures of sMPNST tumor bioluminescence in mice over time, which indicate that acute Brd4 knockdown suppressesMPNST tumorigenesis

in vivo. Mice were started on doxycycline water on day 2 and kept on this treatment until the end of the experiment.

(C) sMPNST tumor volume measurements (each data point represents the average measurement from six different tumors per group).

(D) Top panel: mice at 36 days postsubcutaneous implantation of sMPNST tumor cells (shCONTROL on left flank and shBrd4.552 on right flank). Bottom panel:

tumors excised from mice in the top panel.

(E) Average weight of excised tumors from bottom panel of Figure 3D.

(F) Tumor volume of shCONTROL and shBrd4.552 sMPNST-pTripz tumors in mice. At day 30, when tumors were established (200–400 mm3), mice were started

on doxycycline water.

(G) Representative picture and average weight of excised sMPNST tumors from end of experiment in Figure 3F.

(H) Western blot analysis of BRD4 protein levels in shCONTROL and shBrd4.552 sMPNST tumors in mice given doxycycline water.

(I) Representative images of sMPNST tumor sections stained with either hematoxylin and eosin (H&E) or BrdU antibody.

(J) Quantification of the percentage of BrdU(+) cells from sMPNST tumor sections (scale bars represent 100 mm). All statistics are represented as themean ± SEM

(*p % 0.05, **p % 0.01, ***p % 0.001, ***p % 0.0001).
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Figure 3. JQ1 Induces MPNST Regression In Vivo

(A) Dose-response curves for 2 day JQ1 treatment on primary murine SKPs (wild-type, Nf1�/�, Nf1�/� P53�/�) and MPNST cells (SKP model and cisNP model).

ATP CellTiter-glo assay was used to measure cell viability and normalized to DMSO (vehicle) for each cell type.

(B) Overview of JQ1 drug trial with nude mice bearing sMPNST allografts.

(C) Average sMPNST tumor volume measured during JQ1 drug trial (n = 14 tumors per treatment group).

(D) Average sMPNST tumor bioluminescence counts measured during JQ1 drug trial (n = 14 tumors per treatment group).

(E) Bioluminescence imaging of sMPNST allografts in mice before and after the JQ1 drug trial.

(F) Waterfall plot showing the percentage change in sMPNST tumor volume from before starting (day 0) and after 10 days of JQ1 treatment.

(G) Representative pictures of sMPNST allografts excised from mice treated with vehicle or JQ1 for 15 days.

(H) Staining of sections from sMPNST allografts (vehicle or JQ1 treated) with hematoxylin and eosin (H&E) or immunostaining with BrdU antibody.

(I) Quantification of BrdU(+) cells from vehicle- and JQ1-treated sMPNST tumor sections (scale bars represent 100 mm). All statistics are represented as the

mean ± SEM (*p % 0.05, **p % 0.01, ***p % 0.001, ***p % 0.0001).
phase, and modest affect on the percentage of cells in G2/M

phase (Figure 4C). We observed similar results in both sMPNST

cells and S462 human MPNST cells treated with JQ1 (Figures

4C and 4D). Collectively, these data suggest that genetic and

pharmacological inhibition of BRD4 impedes MPNST cell-cycle

progression.
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Previously, we and others described a role for the CXCR4/

b-catenin signaling pathway in stimulating MPNST cell-cycle

progression via control of Cyclin D1 mRNA expression, which

highlights the importance of Cyclin D1 maintenance in MPNST

cell-cycle control (Mo et al., 2013). How Cyclin D1 transcription

is regulated in MPNSTs remains unknown, but previous reports



Figure 4. BRD4Maintains Cyclin D1Expres-

sion and Cell-Cycle Progression in MPNSTs

(A) sMPNST cells harboring doxycycline (Dox)-

inducible shRNAs were counted after 5 days

culture (+ or – Dox) and normalized to cell count of

‘‘-Dox’’ cells.

(B) sMPNST cells were counted 4 days after

culturing in the presence of vehicle (DMSO)

or JQ1.

(C) sMPNST cells were harvested 4 days after

Brd4 shRNA induction or 3 days after JQ1 treat-

ment for processing, and subsequent analysis of

BrdU uptake and DNA content by flow cytometry

was conducted to determine the percentage of

cells in the indicated cell-cycle phases.

(D) Cell-cycle analysis of 48 hr treated S462 cells

through flow cytometry for BrdU(+) cells and DNA

content (PI).

(E) sMPNST cells treated 24 hr with vehicle or

1,000 nM JQ1 were harvested for chromatin

immunoprecipitation (ChIP)-PCR analysis at

different regions relative to Cyclin D1 transcription

start site (TSS).

(F)Western blot analysis of Cyclin D1 protein levels

in sMPNST cells with Brd4 knockdown or JQ1

treatment.

(G and H) qPCR analysis of cell-cycle regulatory

genes in sMPNST cells with Brd4 knockdown or

JQ1 treatment, respectively.

All statistics are represented as the mean ±

SEM (*p % 0.05, **p % 0.01, ***p % 0.001,

***p % 0.0001).
indicateCyclin D1 as a potential target of BRD4 (Mochizuki et al.,

2008; Yang et al., 2008). Therefore, we sought to determine if

BRD4 directly regulates Cyclin D1 transcription in MPNSTs.

Through chromatin immunoprecipitation quantitative PCR

(ChIP-qPCR) analysis, we found that BRD4 occupies the pro-

moter of Cyclin D1, and that displacement of BRD4 from

chromatin by JQ1 treatment led to reduced promoter occupancy

in sMPNST cells (Figure 4E). Consequently, we found that

shRNA-mediated knockdown or pharmacological inhibition of

BRD4 leads to substantial decrease in Cyclin D1 mRNA and

protein abundance in MPNST cells, whereas other cell-cycle

regulators are less affected by Brd4 shRNA or JQ1 in sMPNST

cells (Figures 4F–4H). Together, these data point to amechanism

of BRD4-mediated epigenetic control of Cyclin D1 transcription

and suggest BRD4 as a therapeutic target for inhibiting onco-

genic Cyclin D1 in MPNSTs.

Brd4 Regulates Expression of Proapoptotic Bim
Cell-cycle arrest can lead to subsequent cellular apoptosis (Pie-

tenpol and Stewart, 2002). Further analysis of acute knockdown

of Brd4 in MPNST led us to observe increased floating cells in

culture (Figure 5A), whichwas suggestive of apoptosis induction.

Indeed, we found an increase in apoptotic cells and activation of

apoptotic markers in both mouse and human MPNST cells with
Cell Reports 6, 81–9
BRD4 inhibition (Figures 5B–5D). On the

other hand, we observed that both wild-

type SKPs and Nf1�/� SKPs do not
undergo robust apoptosis when treated with JQ1 (Figure S2).

To elucidate howBRD4 inhibition triggers apoptosis of MPNSTs,

we performed gene expression microarray analysis to first iden-

tify differentially expressed genes in MPNST cells with or without

BRD4 inhibition (both shRNA and JQ1), which led us to identify

upregulation of proapoptotic BIM (Bcl2l11) (Figure 5E). We also

found that BRD4 inhibition decreased expression of antiapop-

totic Bcl2 in our microarray data (data not shown). Quantitative

RT-PCR and western blot analyses confirm that BRD4 inhibition

(shRNA or JQ1) leads to induction of BIM and downregulation of

BCL-2, and relatively minor effect on the expression of additional

apoptosis regulators evaluated (Figures 5F and 5G). BIM is a pro-

apoptotic, BH3-domain-containing protein that is thought to play

a central role in apoptosis throughactivation of proapoptotic BAX

and BAK, which leads to mitochondrial permeabilization that is

followed by activation of caspases and apoptosis (Bean et al.,

2013; Tait and Green, 2010; Wei et al., 2001). BCL-2 is an antia-

poptotic protein that is thought to prevent BAX/BAK activation

(Cheng et al., 2001). One of the mechanisms is through inhibi-

tion/sequestration of proapoptotic BH3-only proteins, such as

BIM and PUMA (Cheng et al., 2001; Letai et al., 2002; Youle

and Strasser, 2008).

To determine if BRD4-inhibition-mediated downregulation

of Bcl2 expression promotes MPNST apoptosis, we treated
2, January 16, 2014 ª2014 The Authors 87



Figure 5. BET Bromodomain Inhibition Triggers MPNST Apoptosis through Bim Induction
(A) Microscopy images of sMPNST cells after 5 days of shRNA induction in vitro.

(B) Percentage apoptosis in sMPNST cells with and without Brd4 shRNA induction (5 days) by flow cytometry analysis of Annexin V (+) cells.

(C) Apoptosis induction by 3 days of JQ1 treatment in mouse and human MPNSTs cells through flow cytometry analysis for Annexin V (+) cells.

(D) Western blot analyses of lysates from sMPNST cells with (3 days) Brd4 knockdown or (2 days) JQ1 treatment for activation of apoptosis (cCasp3 = cleaved

caspase 3, cParp = cleaved Parp).

(legend continued on next page)
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MPNST cells with ABT-263, a selective small molecule that

inhibits BCL-2/BCL-XL, which prevents sequestration of proap-

optotic BIM or PUMA. We found that BCL-2/BCL-XL inhibition

with ABT-263 is not sufficient to trigger robust apoptosis of

MPNST cells (Figure S4), which suggests that perhaps inhibition

of BRD4 leading to induction of Bim initiates MPNST apoptosis.

Indeed, we found that constitutive knockdown of Bim

attenuates/rescues JQ1-induced apoptosis in multiple MPNST

cell types as indicated by reduced caspase-3 cleavage and

fewer apoptotic cells (Figures 5H and 5I). Collectively, these find-

ings lead us to propose a model in which BRD4 inhibition or JQ1

treatment initiates apoptosis through induction of proapoptotic

Bim, and suppression of antiapoptotic Bcl2 to trigger apoptosis

of NF1-associated MPNSTs (Figure 5J). Furthermore, the dual

restraint on proliferation and survival may indicate how BRD4

inhibition is exquisitely effective against MPNSTs.

DISCUSSION

Here, we employed amouse model of MPNST that allowed us to

study the evolution of these tumors at the transcriptome level,

which permitted us to identify and elucidate a mechanistic basis

for Brd4 in maintaining the tumorigenic capacity and survival of

MPNSTs. Importantly, this study translates basic insights into a

therapeutically tractable target for impeding the progression

and survival of incurable NF1-associated MPNSTs, which may

represent a significant paradigm shift for MPNST patient

therapy. We also provide a mechanism of action as a framework

for developing new therapeutic strategies to disarm remaining

cell-survival networks that MPNSTs may rely upon.

Although traditional Genetic Engineered Mouse Models

(GEMMs) with loss of tumor suppressors Nf1 and P53 have pro-

vided a genetic basis for MPNST pathogenesis, their utility for

discovering therapeutic targets to impede both progression

and survival of these tumors has remained limited. In addition,

the traditional route to study the function of additional genes in

aGEMMwould require generating newmouse strains (knockout,

knockin, or conditional alleles), which incurs a longer time

horizon and costs toward studying gene function (Heyer et al.,

2010). Moreover, if one wishes to study gene expression at

different stages of tumor evolution, isolation of relatively homog-

enous cells from spontaneously arising tumors in traditional

GEMMs would prove difficult (Heyer et al., 2010). Although

SKPs are a cell of origin for dermal neurofibromas, at present it

is not clear that SKPs are a cell of origin for MPNSTs in humans.

Nevertheless, observing that Nf1�/� P53�/� SKPs can undergo

malignant transformation to MPNSTs suggested a novel oppor-

tunity to delineate what molecular changes underlie MPNST

development. Thus, in this study, we took advantage of our

nongermline GEMM of NF1-associated MPNST to study the
(E) Expression microarray analysis comparing the effect of Brd4 shRNA or JQ1 o

(F) qPCR analysis of the effect of (3 days) Brd4 shRNA or (2 days) JQ1 treatmen

(G) Western blot validation of BIM induction and BCL-2 downregulation through

(H) Western blot analysis of BIM knockdown leading to attenuation of cleaved ca

(I) Flow cytometry analysis of Annexin V (+) cells reveals attenuated apoptosis th

(J) Model for how BET bromodomain inhibition modulates the ratio of proapopto

All statistics are represented as the mean ± SEM (*p % 0.05, **p % 0.01, ***p %
transcriptome of relatively homogenous sMPNSTs and their pre-

tumorigenic precursors (NP-SKPs). The elevated expression of

Brd4 in our sMPNST transcriptome data captured our attention.

Our ability to genetically and pharmacologically inhibit BRD4 in a

temporal manner with great haste and ease in our stem/

progenitor transplantation model allowed us to elucidate the

role of BRD4 in MPNST tumorigenesis. These results highlight

the strength and speed in which our nongermline GEMM can

accelerate discovery of tractable therapeutic targets for rare

malignancies that represent an unmet medical need.

As a proof of principle, using this sMPNST model, we and our

colleagues previously delineated a signaling pathway in which

cell-surface receptor CXCR4 mediates intracellular activation of

b-catenin, which leads to expression of Cyclin D1 and estab-

lished a critical role for Cyclin D1 in promoting cell-cycle pro-

gression and tumorigenesis of MPNSTs (Mo et al., 2013). In

agreement, another group identified Wnt/b-catenin signaling as

a potential driver of MPNSTs through a Sleeping Beauty genetic

screen and found that this pathway regulates Cyclin D1 expres-

sion in MPNSTs as well (Rahrmann et al., 2013; Watson et al.,

2013). In the current study presented here, we demonstrate

that BRD4 occupies the promoter of Cyclin D1 in MPNSTs, and

that pharmacological inhibition with JQ1 inhibits BRD4 occu-

pancy at that promoter leading to decreased expression ofCyclin

D1, which correlates with decreased proliferation observed. In

contrast, BRD4 has been shown to be required for maintaining

transcription of oncogenic c-Myc in hematopoieticmalignancies,

but we did not observe loss of c-Myc expression inMPNSTswith

BRD4 inhibition (data not shown). This cancer cell type specificity

for regulating tumor oncogenes throughBRD4 can nowbe attrib-

uted to the recent discovery of BRD4-regulated superenhancers

inmultiplemyelomaandother cancers (Lovén et al., 2013). Those

findings suggest that BRD4 may maintain the cancer cell state

through transcriptional regulation of specific oncogenesdepend-

ing on the cell type of origin (c-Myc in the case of leukemia and

multiple myeloma, and Cyclin D1 in NF1-associated MPNSTs)

(Delmore et al., 2011; Zuber et al., 2011).

Most importantly, our findings point to a mechanism of action

by which bromodomain inhibition induces apoptosis through

induction proapoptotic effector molecule BIM. We demonstrate

that knockdown of Bim can rescue MPNST cells from JQ1-

induced apoptosis, which further highlights the importance of

this finding. Interestingly, in support for the role of Bim in MPNST

tumor development, we observed that sMPNST cells with

Bim knockdown had elevated tumor bioluminescence when

compared control sMPNST cells. Thus, further highlighting the

importance of Bim regulation through BRD4 (Figure S3).

Albeit, additional mechanisms underlying JQ1-induced death

in MPNSTs may exist. For example, we observed downregula-

tion of Bcl2 expression in BRD4-inhibited MPNSTs, which is
n sMPNST cells reveals induction of proapoptotic effector Bim.

t on the expression of apoptosis regulators in sMPNST cells.

Brd4 shRNA (3 days) or JQ1 (2 days) treatment in sMPNST cells.

spase 3 in sMPNST and Cis MPNST cells treated with JQ1 (2 days).

rough Bim shRNAs in sMPNST cells treated with JQ1 for 4 days.

tic and antiapoptotic molecules in favor of apoptosis.

0.001, ***p % 0.0001).
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consistent with a study involving bromodomain inhibition in

MLL-fusion leukemia (Dawson et al., 2011). However, through

direct inhibition of BCL-2 using ABT-263 we did not observe sig-

nificant apoptosis compared to JQ1, which suggests that BCL-2

inhibition alone does not induce MPNST apoptosis robustly, but,

in combination with BIM induction, can efficiently induce

apoptosis. Our observations suggest that bromodomain inhibi-

tion with JQ1 induces Bim and downregulates Bcl2 expression,

leading to an imbalance of pro- and antiapoptotic effectors that

favors induction of apoptosis (Figure 5J), and supports the

model for an antiapoptotic/proapoptotic BCL-2 rheostat (Bean

et al., 2013; Corcoran et al., 2013). Consistent with this idea,

we found that further inhibition of BCL-2 with ABT-263 syner-

gizes with JQ1 or shBrd4 to more potently induce MPNST

apoptosis (Figure S4).

On the other hand, we observed that a majority of JQ1-regu-

latedgenesdonotoverlappingwith shBrd4-regulatedgenes (Fig-

ure S5), which is expected given that JQ1 also inhibits Brd2 and

Brd3. It remains unknown whether additional BET bromodomain

proteins (BRD2, BRD3) (also targeted by JQ1) play a role in

MPNST pathogenesis. However, in our Nf1�/� P53�/� SKP and

MPNST microarray data, differential expression of neither Brd2

nor Brd3 was observed, which is contrary to what we observed

for Brd4 (data not shown). Nonetheless, the role of additional

BET bromodomain family members (including Brd2 and Brd3)

will be of interest in future studies, but at present, it remains clear

fromour findings thatBIM inductionplays a central role in shBrd4/

JQ1-induced apoptosis inMPNSTs.More broadly, these findings

suggest an epigenetic mechanism underlying the balance of pro-

apoptotic/antiapoptotic proteins that can be exploited by BET

bromodomain inhibitors for inducing cancer cell apoptosis.

All together, the dual effect of growth inhibition and apoptosis

leading to tumor regression via JQ1 may allow physicians to

utilize JQ1 along with surgery to better manage these tumors

in NF1 patients. Although JQ1 remains to be optimized for

clinical development, its equivalent bromodomain inhibitor

I-BET 151 is currently being evaluated in phase I clinical trials

and we hope will reach patients in the clinic (http://www.

clinicaltrials.gov). Future studies to molecularly understand

how JQ1 induces proapoptotic Bim should lead to new targets

or additional approved drugs for therapeutically inducing this

apoptotic pathway, and we speculate those studies would allow

more rapid or synergistic induction of tumor regression. There-

fore, this may allow physicians to limit drug exposure to patients

while maintaining or boosting therapeutic efficacy.

In conclusion, we took advantage of an MPNST mouse model

that permits the study of tumor evolution for transcriptome

analysis, which allowed us to identify and elucidate mechanisms

for BRD4 inMPNST growth and survival. Our findings collectively

provide a strong preclinical basis for evaluating BET bro-

modomain inhibitors as novel therapies for these life-threatening

MPNSTs in NF1 patients.
EXPERIMENTAL PROCEDURES

Cells and Reagents

Primary sMPNST and Cis MPNST cells were established from SKP-MPNST

and cisNP model mice as described (Mo et al., 2013; Vogel et al., 1999).
90 Cell Reports 6, 81–92, January 16, 2014 ª2014 The Authors
S462 human MPNST cell line is a gift from Dr. Karen Cichowski (Brigham

andWomen’s Hospital, MA). All MPNST cells (mouse and human) are cultured

in DMEM (10% fetal bovine serum, 1% penicillin-streptomycin, 1% L-gluta-

mine, 1% sodium pyruvate). SKPs were prepared and cultured as described

(Biernaskie et al., 2006).

Animal Studies

All mice were housed in the animal facility at the University of Texas South-

westernMedical Center at Dallas (UTSW). Animal care and use were in compli-

ance with regulations of the Institutional Animal Care and Research Advisory

Committee at UTSW. Athymic nude mice were used for tumor studies. For

shRNA induction in sMPNST-pTripz tumors in vivo, mice were given water

containing 1 mg/ml doxycycline (Sigma-Aldrich) in 5% sucrose. For daily

drug administration, a single dose of vehicle or 50 mg/kg JQ1 (Cayman

Chemical) were prepared as described (Filippakopoulos et al., 2010; Zuber

et al., 2011). Tumor volume was calculated as described (Mo et al., 2013).

D-Luciferin (50 mg/kg) was administered by intraperitoneal injection followed

by bioluminescent imaging of mice 10 min later with IVIS Spectrum system

(Caliper Life Sciences).

Lentiviral Constructs

Mouse Brd4 shRNAs were generated by synthesizing 22-mer sequences cor-

responding to Brd4 shRNAs described previously (Zuber et al., 2011) for PCR

cloning into pTripz lentiviral vector. For lentivirus production, psPAX2 and

pMD2.g (Addgene plasmids 12260 and 12259) packaging vectors were used.

In Vitro Growth Assays

ATP CellTiter Glo assay (Promega) was performed as per manufacturer’s

instructions. The FLUOstar OPTIMA 96-well plate reader (BMG Labtech)

was used for luminescence measurements.

BrdU Cell-Cycle Analysis and Annexin V Flow Cytometry

Cell-cycle studies were conducted using BrdU Flow kit (BD Biosciences) as

per manufacturer’s instructions. For analysis of cellular apoptosis/death,

Annexin V-FITC Kit (Miltenyi Biotec) was used as per manufacturer’s instruc-

tions. All flow cytometry was performed using FACSCalibur Flow Cytometer

(BD Biosciences) at the UTSW Flow Cytometry core facility. Data were

analyzed using FlowJo software (Tree Star).

RNA Isolation, cDNA Synthesis, qRT-PCR

RNEasymini kit (QIAGEN) was used to isolate total RNA from cells, followed by

cDNA synthesis with iScript Select cDNA synthesis kit (Bio-Rad), and then

qRT-PCR using iTaq Universal SYBR Green Supermix (Bio-Rad) on the CFX

Connect Real-Time PCR platform (Bio-Rad). Data were quantified by DCt

method and normalized relative to Gapdh. See Figure S6 for primers used.

Expression Microarray Analysis

For Figure 1, total RNA was isolated from sMPNST tumors and NP-SKPs from

which those tumors were derived from (three biological replicates were

prepared for both groups). For microarray analysis of shBrd4 and JQ1 effect

on sMPNST cells, technical replicates (n = 3) were used for the experiment.

RNA quality and microarray experiments using Mouse Genome 430 2.0

microarrays (Affymetrix) were conducted by the UT Southwestern Microarray

core facility. Data were analyzed with GeneSpring GX software (Agilent

Technologies).

Western Blot

Protein isolation and subsequent western blot analysis were performed as

described previously (Mo et al., 2013). Antibodies used were as follows:

BRD4 (Epitomics, Bethyl Labs); BIM, Cleaved Caspase-3 (Cell Signaling

Technology); Cleaved Parp, Cyclin D1 (Millipore); and Bcl2, Gapdh (Santa

Cruz Biotechnology).

Immunohistochemistry

Tumor tissue sample preparation, immunohistochemistry, and data quantifi-

cation was performed as described previously (Mo et al., 2013). Antibodies

used were BRD4 (Bethyl Laboratories) and BrdU (Dako).

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov


Chromatin-Immunoprecipitation qPCR

ChIP experiments were conducted as described in detailed protocol from

Abcam. Briefly, chromatin equivalent to 25 mg DNA was 10-fold diluted in IP

dilution buffer, precleared by 1 hr incubation with ChIP-Grade Protein A/G

Plus Agarose beads (Thermo Scientific), and then incubated overnight with

Brd4 or control immunoglobulin G (IgG) antibody, 2 hr with protein A/G agarose

beads, followed by wash, elution, and DNA purification (phenol/chloroform

extraction followed by ethanol precipitation). For qPCR analysis, each IP signal

was normalized to input signal to plot data as percentage of input. Antibodies

used were as follows: BRD4 (Bethyl Labs) and control IgG (Cell Signaling

Technology).

Statistical Analyses

All data are displayed as the mean ± SEM unless specified otherwise. A two-

tailed t test was used to evaluate statistical significance (p < 0.05 was deemed

statistically significant).
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