6 research outputs found
The Genetics of Systemic Lupus Erythematosus : The Specificity of IRF5 to SLE.
The breakdown of self-tolerance is the main driving force behind susceptibility to SLE. When this occurs, T and B cells are activated in an uncontrolled manner and produce autoantibodies against self fragmented DNA, RNA and sometimes other parts of the cell such as cardiolipin, phosphatidylserine, etc. The mechanism behind the breakdown of self-tolerance may be genetic factors that are triggered by environmental factors. SLE is not caused by a single gene, but by many genes, and is thus a polygenic disease. So far only a few genes have been found to be associated with SLE including PDCD1, FcÎłRs, and PTPN22. The main aim of my thesis is to find susceptibility genes responsible for SLE. Recently, a gene called IRF5 was found to be associated with SLE. In paper one, we performed a thorough study and confirmed its association to SLE. In addition, we found a few other SNPs in the gene that were associated to the disease. Among them, SNP rs2004640 is very strongly associated and was found to affect the splicing of the gene. Another SNP, rs2280714, correlated with overexpression of the gene, although SNP rs10954213 was much more highly correlated with expression adding to this, in paper two we found a few other SNPs that were associated to SLE and played crucial roles in gene function. An indel in exon 6, though not associated by itself, regulated which isoforms were expressed. Individuals with 2 repeats expressed isoforms V1 and V4, while individuals with 4 repeats expressed isoforms V5 and V6. SNP rs2070197 was also very strongly associated, but did not have a functional role. In paper three, the same polymorphisms were studied in a Mexican population, which showed an even stronger association when compared to a European population. It is known that autoimmune diseases share susceptibility genes, therefore we wanted to see if the IRF5 gene is associated with any other autoimmune diseases. In papers four and five, we tested its association to RA (using three sets of patients and controls from Sweden, Argentina and Spain) and psoriasis (using a set of patients and controls from Sweden). Association was not found in either of the diseases. Therefore, we believe that this association may be SLE-specific
Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus.
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by production of autoantibodies and complex genetic inheritance. In a genome-wide scan using 85,042 SNPs, we identified an association between SLE and a nonsynonymous substitution (rs10516487, R61H) in the B-cell scaffold protein with ankyrin repeats gene, BANK1. We replicated the association in four independent case-control sets (combined P = 3.7 x 10(-10); OR = 1.38). We analyzed BANK1 cDNA and found two isoforms, one full-length and the other alternatively spliced and lacking exon 2 (Delta2), encoding a protein without a putative IP3R-binding domain. The transcripts were differentially expressed depending on a branch point-site SNP, rs17266594, in strong linkage disequilibrium (LD) with rs10516487. A third associated variant was found in the ankyrin domain (rs3733197, A383T). Our findings implicate BANK1 as a susceptibility gene for SLE, with variants affecting regulatory sites and key functional domains. The disease-associated variants could contribute to sustained B cell-receptor signaling and B-cell hyperactivity characteristic of this disease
Amerindian-specific regions under positive selection harbour new lipid variants in Latinos.
Dyslipidemia and obesity are especially prevalent in populations with Amerindian backgrounds, such as Mexican-Americans, which predispose these populations to cardiovascular disease. Here we design an approach, known as the cross-population allele screen (CPAS), which we conduct prior to a genome-wide association study (GWAS) in 19,273 Europeans and Mexicans, in order to identify Amerindian risk genes in Mexicans. Utilizing CPAS to restrict the GWAS input variants to only those differing in frequency between the two populations, we identify novel Amerindian lipid genes, receptor-related orphan receptor alpha (RORA) and salt-inducible kinase 3 (SIK3), and three loci previously unassociated with dyslipidemia or obesity. We also detect lipoprotein lipase (LPL) and apolipoprotein A5 (APOA5) harbouring specific Amerindian signatures of risk variants and haplotypes. Notably, we observe that SIK3 and one novel lipid locus underwent positive selection in Mexicans. Furthermore, after a high-fat meal, the SIK3 risk variant carriers display high triglyceride levels. These findings suggest that Amerindian-specific genetic architecture leads to a higher incidence of dyslipidemia and obesity in modern Mexicans
Recommended from our members
Amerindian-specific regions under positive selection harbour new lipid variants in Latinos.
Dyslipidemia and obesity are especially prevalent in populations with Amerindian backgrounds, such as Mexican-Americans, which predispose these populations to cardiovascular disease. Here we design an approach, known as the cross-population allele screen (CPAS), which we conduct prior to a genome-wide association study (GWAS) in 19,273 Europeans and Mexicans, in order to identify Amerindian risk genes in Mexicans. Utilizing CPAS to restrict the GWAS input variants to only those differing in frequency between the two populations, we identify novel Amerindian lipid genes, receptor-related orphan receptor alpha (RORA) and salt-inducible kinase 3 (SIK3), and three loci previously unassociated with dyslipidemia or obesity. We also detect lipoprotein lipase (LPL) and apolipoprotein A5 (APOA5) harbouring specific Amerindian signatures of risk variants and haplotypes. Notably, we observe that SIK3 and one novel lipid locus underwent positive selection in Mexicans. Furthermore, after a high-fat meal, the SIK3 risk variant carriers display high triglyceride levels. These findings suggest that Amerindian-specific genetic architecture leads to a higher incidence of dyslipidemia and obesity in modern Mexicans