2,304 research outputs found
A combined tactile and Raman probe for tissue characterization - Design considerations
Histopathology is the golden standard for cancer diagnosis and involves the characterization of tissue components. It is labour intensive and time consuming. We have earlier proposed a combined fibre-optic near-infrared Raman spectroscopy (NIR-RS) and tactile resonance method (TRM) probe for detecting positive surgical margins as a complement to interoperative histopathology. The aims of this study were to investigate the effects of attaching an RS probe inside a cylindrical TRM sensor and to investigate how laser-induced heating of the fibre-optic NIR-RS affected the temperature of the RS probe tip and an encasing TRM sensor. In addition, the possibility to perform fibre-optic NIR-RS in a well-lit environment was investigated. A small amount of rubber latex was preferable for attaching the thin RS probe inside the TRM sensor. The temperature rise of the TRM sensor due to a fibre-optic NIR-RS at 270 mW during 20 s was less than 2 degrees C. Fibre-optic NIR-RS was feasible in a dimmed bright environment using a small light shield and automatic subtraction of a pre-recorded contaminant spectrum. The results are promising for a combined probe for tissue characterization
Detection of Asynchronous Message Passing Errors Using Static Analysis
Concurrent programming is hard and prone to subtle errors. In this paper we present a static analysis that is able to detect some commonly occurring kinds of message passing errors in languages with dynamic process creation and communication based on asynchronous message passing. Our analysis is completely automatic, fast, and strikes a proper balance between soundness and completeness: it is effective in detecting errors and avoids false alarms by computing a close approximation of the interprocess communication topology of programs. We have integrated our analysis in dialyzer, a widely used tool for detecting software defects in Erlang programs, and demonstrate its effectiveness on libraries and applications of considerable size. Despite the fact that these applications have been developed over a long period of time and are reasonably well-tested, our analysis has managed to detect a significant number of previously unknown message passing errors in their code
Point-of-Care Diagnostics for Infection and Antimicrobial Resistance in Sub-Saharan Africa - A Narrative Review.
INTRODUCTION
Sub-Saharan African (SSA) countries are severely impacted by antimicrobial resistance (AMR). Due to gaps in access to diagnostics in SSA the true extent of AMR remains unknown. This diagnostic gap affects patient management and leads to significant antimicrobial overuse. This review explores how point-of-care (POC) testing for pathogen identification and AMR may be used to close the diagnostic gap in SSA countries.
METHODS
A narrative review exploring current clinical practice and novel developments in the field of point-of-care (POC) testing for infectious diseases and AMR.
FINDINGS
POC assays for identification of various pathogens have been successfully rolled out in SSA countries. While implementation studies have mostly highlighted impressive test performance of POC assays, there is limited data on effect of implementation on clinical outcomes and cost-effectiveness. We did not encounter local studies of host-directed POC assays relevant to AMR. Novel POC assays using real-time PCR, isothermal amplification, microfluidics and other technologies are in various stages of development.
DISCUSSION
Available literature shows that POC testing for AMR applications is implementable in SSA and holds the potential to reduce the diagnostic gap. Implementation will require effective regulatory pathways, incorporation of POC testing in clinical and laboratory guidelines, and adequate value capture in existing health financing models
Nonclassical binding of formylated peptide in crystal structure of the MHC class lb molecule H2-M3
AbstractH2-M3 is a class Ib MHC molecule of the mouse with a 104-fold preference for binding N-fonmylated peptides. To elucidate the basis of this unusual specificity, we expressed and crystallized a soluble form of M3 with a fonnylated nonamer peptide, fMYFINILTL, and determined the structure by X-ray crystallography. M3, refined at 2.1AËšresolution, resembles class la MHC molecules in its overall structure, but differs in the peptide-binding groove. The A pocket, which usually accommodates the free N-terminus of a bound peptide, is closed, and the peptide Is shifted one residue, such that the P1 side chain is lodged in the B pocket. The formyl group Is coordinated by His-9 and a bound water on the floor of the groove
Feasibility of single-order parameter description of equilibrium viscous liquid dynamics
Molecular dynamics results for the dynamic Prigogine-Defay ratio are
presented for two glass-forming liquids, thus evaluating the experimentally
relevant quantity for testing whether metastable-equilibrium liquid dynamics to
a good approximation are described by a single parameter. For the Kob-Andersen
binary Lennard-Jones mixture as well as for an asymmetric dumbbell model liquid
a single-parameter description works quite well. This is confirmed by
time-domain results where it is found that energy and pressure fluctuations are
strongly correlated on the alpha-time scale in the NVT ensemble; in the NpT
ensemble energy and volume fluctuations similarly correlate strongly.Comment: Phys. Rev. E, in pres
NEIL1 excises 3′ end proximal oxidative DNA lesions resistant to cleavage by NTH1 and OGG1
Base excision repair is the major pathway for the repair of oxidative DNA damage in human cells that is initiated by a damage-specific DNA glycosylase. In human cells, the major DNA glycosylases for the excision of oxidative base damage are OGG1 and NTH1 that excise 8-oxoguanine and oxidative pyrimidines, respectively. We find that both enzymes have limited activity on DNA lesions located in the vicinity of the 3′ end of a DNA single-strand break, suggesting that other enzymes are involved in the processing of such lesions. In this study, we identify and characterize NEIL1 as a major DNA glycosylase that excises oxidative base damage located in close proximity to the 3′ end of a DNA single-strand break
- …