21,471 research outputs found

    Area Quantization in Quasi-Extreme Black Holes

    Get PDF
    We consider quasi-extreme Kerr and quasi-extreme Schwarzschild-de Sitter black holes. From the known analytical expressions obtained for their quasi-normal modes frequencies, we suggest an area quantization prescription for those objects.Comment: Final version to appear in Mod. Phys. Lett.

    Probing embedded star clusters in the HII complex NGC 6357 with VVV

    Get PDF
    NGC 6357 is an active star-forming region located in the Sagittarius arm displaying several star clusters, which makes it a very interesting target to investigate star formation and early cluster evolution. We explore NGC 6357 with the "VISTA Variables in the V\'ia a L\'actea" (VVV) photometry of seven embedded clusters (ECs), and one open cluster (OC) projected in the outskirts of the complex.Photometric and structural properties (age, reddening, distance, core and total radii) of the star clusters are derived. VVV saturated stars are replaced by their 2MASS counterparts. Field-decontaminated VVV photometry is used to analyse Colour-Magnitude Diagrams (CMDs), stellar radial density profiles (RDPs) and determine astrophysical parameters. We report the discovery of four ECs and one intermediate-age cluster in the complex area. We derive a revised distance estimate for NGC 6357 of 1.78±\pm0.1 kpc based on the cluster CMD morphologies. Among the ECs, one contains the binary star the WR 93, while the remaining ones are dominated by pre-main sequence (PMS) stars, young-stellar objects (YSO) and/or and have a developed main sequence. These features reflect a significant age spread among the clusters. Evidence is found that the relatively populous cluster Pismis 24 hosts two subclusters.Comment: This article will be published in the A&A. 11 pages, 15 figures and 3 table

    Counterrotation in magnetocentrifugally driven jets and other winds

    Full text link
    Rotation measurement in jets from T Tauri stars is a rather difficult task. Some jets seem to be rotating in a direction opposite to that of the underlying disk, although it is not yet clear if this affects the totality or part of the outflows. On the other hand, Ulysses data also suggest that the solar wind may rotate in two opposite ways between the northern and southern hemispheres. We show that this result is not as surprising as it may seem and that it emerges naturally from the ideal MHD equations. Specifically, counterrotating jets neither contradict the magnetocentrifugal driving of the flow nor prevent extraction of angular momentum from the disk. The demonstration of this result is shown by combining the ideal MHD equations for steady axisymmetric flows. Provided that the jet is decelerated below some given threshold beyond the Alfven surface, the flow will change its direction of rotation locally or globally. Counterrotation is also possible for only some layers of the outflow at specific altitudes along the jet axis. We conclude that the counterrotation of winds or jets with respect to the source, star or disk, is not in contradiction with the magnetocentrifugal driving paradigm. This phenomenon may affect part of the outflow, either in one hemisphere, or only in some of the outflow layers. From a time-dependent simulation, we illustrate this effect and show that it may not be permanent.Comment: To appear in ApJ

    Counter-rotation in relativistic magnetohydrodynamic jets

    Full text link
    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. (2012) have shown that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Signatures of motions transverse to the jet axis and in opposite directions have recently been measured in M87 (Meyer et al. 2013). One possible interpretation of this motion is the one of counter rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases : if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or, if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of relativistic MHD jet simulation.Comment: Accepted for publication in ApJ
    corecore