28,515 research outputs found
Asteroseismology and Magnetic Cycles
Small cyclic variations in the frequencies of acoustic modes are expected to
be a common phenomenon in solar-like pulsators, as a result of stellar magnetic
activity cycles. The frequency variations observed throughout the solar and
stellar cycles contain information about structural changes that take place
inside the stars as well as about variations in magnetic field structure and
intensity. The task of inferring and disentangling that information is,
however, not a trivial one. In the sun and solar-like pulsators, the direct
effect of the magnetic field on the oscillations might be significantly
important in regions of strong magnetic field (such as solar- / stellar-spots),
where the Lorentz force can be comparable to the gas-pressure gradient. Our aim
is to determine the sun- / stellar-spots effect on the oscillation frequencies
and attempt to understand if this effect contributes strongly to the frequency
changes observed along the magnetic cycle. The total contribution of the spots
to the frequency shifts results from a combination of direct and indirect
effects of the magnetic field on the oscillations. In this first work we
considered only the indirect effect associated with changes in the
stratification within the starspot. Based on the solution of the wave equation
and the variational principle we estimated the impact of these stratification
changes on the oscillation frequencies of global modes in the sun and found
that the induced frequency shifts are about two orders of magnitude smaller
than the frequency shifts observed over the solar cycle.Comment: 4 pages, 6 figures, ESF Conference: The Modern Era of Helio- and
Asteroseismology, to be published on 3 December 2012 at Astronomische
Nachrichten 333, No. 10, 1032-103
Quantized fields and gravitational particle creation in f(R) expanding universes
The problem of cosmological particle creation for a spatially flat,
homogeneous and isotropic Universes is discussed in the context of f(R)
theories of gravity. Different from cosmological models based on general
relativity theory, it is found that a conformal invariant metric does not
forbid the creation of massless particles during the early stages (radiation
era) of the Universe.Comment: 14 pages, 2 figure
Quantum key distribution session with 16-dimensional photonic states
The secure transfer of information is an important problem in modern
telecommunications. Quantum key distribution (QKD) provides a solution to this
problem by using individual quantum systems to generate correlated bits between
remote parties, that can be used to extract a secret key. QKD with
D-dimensional quantum channels provides security advantages that grow with
increasing D. However, the vast majority of QKD implementations has been
restricted to two dimensions. Here we demonstrate the feasibility of using
higher dimensions for real-world quantum cryptography by performing, for the
first time, a fully automated QKD session based on the BB84 protocol with
16-dimensional quantum states. Information is encoded in the single-photon
transverse momentum and the required states are dynamically generated with
programmable spatial light modulators. Our setup paves the way for future
developments in the field of experimental high-dimensional QKD.Comment: 8 pages, 3 figure
From de Sitter to de Sitter: decaying vacuum models as a possible solution to the main cosmological problems
Decaying vacuum cosmological models evolving smoothly between two extreme
(very early and late time) de Sitter phases are capable to solve or at least to
alleviate some cosmological puzzles, among them: (i) the singularity, (ii)
horizon, (iii) graceful-exit from inflation, and (iv) the baryogenesis problem.
Our basic aim here is to discuss how the coincidence problem based on a large
class of running vacuum cosmologies evolving from de Sitter to de Sitter can
also be mollified. It is also argued that even the cosmological constant
problem become less severe provided that the characteristic scales of the two
limiting de Sitter manifolds are predicted from first principles.Comment: 7 pages, 2 figures, title changed, typos corrected, text and new
references adde
- …