20,232 research outputs found

    Influence of Small-Scale Inhomogeneities on the Cosmological Consistency Tests

    Full text link
    The current cosmological dark sector (dark matter plus dark energy) is challenging our comprehension about the physical processes taking place in the Universe. Recently, some authors tried to falsify the basic underlying assumptions of such dark matter-dark energy paradigm. In this Letter, we show that oversimplifications of the measurement process may produce false positives to any consistency test based on the globally homogeneous and isotropic LCDM model and its expansion history based on distance measurements. In particular, when local inhomogeneity effects due to clumped matter or voids are taken into account, an apparent violation of the basic assumptions ("Copernican Principle") seems to be present. Conversely, the amplitude of the deviations also probes the degree of reliability underlying the phenomenological Dyer-Roeder procedure by confronting its predictions with the accuracy of the weak lensing approach. Finally, a new method is devised to reconstruct the effects of the inhomogeneities in a LCDM model, and some suggestions of how to distinguish between clumpiness (or void) effects from different cosmologies are discussed.Comment: 18 pages, 2 figures. Improved version accepted for publication as a Letter in MNRA

    Deflationary cosmology: constraints from angular size and ages of globular clusters

    Get PDF
    Observational constraints to a large class of decaying vacuum cosmologies are derived using the angular size data of compact radio sources and the latest age estimates of globular clusters. For this class of deflationary Λ(t)\Lambda(t) models, the present value of the vacuum energy density is quantified by a positive β\beta parameter smaller than unity. In the case of milliarcsecond compact radio-sources, we find that the allowed intervals for β\beta and the matter density parameter Ωm\Omega_m are heavily dependent on the value of the mean projected linear size ll. For l≃20h−1−30h−1l \simeq 20h^{-1} - 30h^{-1} pc, the best fit occurs for β∼0.58\beta \sim 0.58, Ωm∼0.58\Omega_{\rm{m}} \sim 0.58, and β∼0.76\beta \sim 0.76, Ωm∼0.28\Omega_{\rm{m}} \sim 0.28, respectively. This analysis shows that if one minimizes χ2\chi^{2} for the free parameters ll, Ωm\Omega_{\rm{m}} and β\beta, the best fit for these angular size data corresponds to a decaying Λ(t)\Lambda(t) with Ωm=0.54\Omega_{\rm{m}} = 0.54 β=0.6\beta=0.6 and l=22.64h−1l = 22.64h^{-1} pc. Constraints from age estimates of globular clusters and old high redshift galaxies are not so restrictive, thereby suggesting that there is no age crisis for this kind of Λ(t)\Lambda(t) cosmologies.Comment: 6 pages, 3 figures, revised version to appear in Phys. Rev.

    Is Λ\LambdaCDM an effective CCDM cosmology?

    Full text link
    We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating Λ\LambdaCDM cosmology with just one dynamical free parameter. This kind of scenario includes the creation cold dark matter (CCDM) model [Lima, Jesus & Oliveira, JCAP 011(2010)027] as a particular case and also provides a natural reduction of the dark sector since the vacuum component is not needed to accelerate the Universe. The new cosmic scenario is equivalent to Λ\LambdaCDM both at the background and perturbative levels and the associated creation process is also in agreement with the universality of the gravitational interaction and equivalence principle. Implicitly, it also suggests that the present day astronomical observations cannot be considered the ultimate proof of cosmic vacuum effects in the evolved Universe because Λ\LambdaCDM may be only an effective cosmology.Comment: 6 pages, 2 figures, changes in the abstract, introduction, new references and typo correction

    Kinematic Constraints to the Transition Redshift from SNe Ia Union Data

    Full text link
    The kinematic approach to cosmological tests provides a direct evidence to the present accelerating stage of the universe which does not depend on the validity of general relativity, as well as on the matter-energy content of the Universe. In this context, we consider here a linear two-parameter expansion for the decelerating parameter, q(z)=q0+q1zq(z)=q_0+q_1z, where q0q_0 and q1q_1 are arbitrary constants to be constrained by the Union supernovae data. By assuming a flat Universe we find that the best fit to the pair of free parameters is (q0,q1q_0,q_1) = (−0.73,1.5)-0.73,1.5) whereas the transition redshift is zt=0.49−0.07+0.14z_t = 0.49^{+0.14}_{-0.07} (1σ1\sigma) −0.12+0.54^{+0.54}_{-0.12} (2σ2\sigma). This kinematic result is in agreement with some independent analyzes and accommodates more easily many dynamical flat models (like Λ\LambdaCDM).Comment: 10 pages, 4 figures, 1 tabl

    Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters

    Full text link
    By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784 we access cosmic acceleration employing a kinematic description. Such result is fully independent on the validity of any metric gravity theory, the possible matter-energy contents filling the Universe, as well as on the SNe Ia Hubble diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativit

    Are Galaxy Clusters Suggesting an Accelerating Universe?

    Full text link
    The present cosmic accelerating stage is discussed through a new kinematic method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface brightness data from galaxy clusters. By using the SZE/X-ray data from 38 galaxy clusters in the redshift range 0.14≤z≤0.890.14 \leq z \leq 0.89 [Bonamente et al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is accelerating and that the transition from an earlier decelerating to a late time accelerating regime is relatively recent. The ability of the ongoing Planck satellite mission to obtain tighter constraints on the expansion history through SZE/X-ray angular diameters is also discussed. Our results are fully independent on the validity of any metric gravity theory, the possible matter- energy contents filling the Universe, as well as on the SNe Ia Hubble diagram from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings of the Conferenc

    Can Old Galaxies at High Redshifts and Baryon Acoustic Oscillations Constrain H_0?

    Full text link
    A new age-redshift test is proposed in order to constrain H0H_0 with basis on the existence of old high redshift galaxies (OHRG). As should be expected, the estimates of H0H_0 based on the OHRG are heavily dependent on the cosmological description. In the flat concordance model (Λ\LambdaCDM), for example, the value of H0H_0 depends on the mass density parameter ΩM=1−ΩΛ\Omega_M=1 - \Omega_{\Lambda}. Such a degeneracy can be broken trough a joint analysis involving the OHRG and baryon acoustic oscillation (BAO) signature. In the framework of the ΛCDM\Lambda CDM model our joint analysis yields a value of H_0=71^{+4}_{-4}\kms Mpc−1^{-1} (1σ1\sigma) with the best fit density parameter ΩM=0.27±0.03\Omega_M=0.27\pm0.03. Such results are in good agreement with independent studies from the {\it{Hubble Space Telescope}} key project and the recent estimates of WMAP, thereby suggesting that the combination of these two independent phenomena provides an interesting method to constrain the Hubble constant.Comment: 16 pages, 6 figures, 1 tabl

    Constraints on Cold Dark Matter Accelerating Cosmologies and Cluster Formation

    Full text link
    We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Ωm=1\Omega_{m}=1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving BAO + CMB + SNe Ia data yields Ω~m=0.28±0.01{\tilde{\Omega}}_{m}= 0.28\pm 0.01 (1σ1\sigma) where Ω~m\tilde{{\Omega}}_{m} is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from large scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Λ\LambdaCDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Λ\LambdaCDM scenarios trough a more detailed analysis involving CMB, weak lensing, as well as the large scale structure.Comment: 12 pages, 3 figures, Accepted for publication by Physical Rev.

    Counterrotation in magnetocentrifugally driven jets and other winds

    Full text link
    Rotation measurement in jets from T Tauri stars is a rather difficult task. Some jets seem to be rotating in a direction opposite to that of the underlying disk, although it is not yet clear if this affects the totality or part of the outflows. On the other hand, Ulysses data also suggest that the solar wind may rotate in two opposite ways between the northern and southern hemispheres. We show that this result is not as surprising as it may seem and that it emerges naturally from the ideal MHD equations. Specifically, counterrotating jets neither contradict the magnetocentrifugal driving of the flow nor prevent extraction of angular momentum from the disk. The demonstration of this result is shown by combining the ideal MHD equations for steady axisymmetric flows. Provided that the jet is decelerated below some given threshold beyond the Alfven surface, the flow will change its direction of rotation locally or globally. Counterrotation is also possible for only some layers of the outflow at specific altitudes along the jet axis. We conclude that the counterrotation of winds or jets with respect to the source, star or disk, is not in contradiction with the magnetocentrifugal driving paradigm. This phenomenon may affect part of the outflow, either in one hemisphere, or only in some of the outflow layers. From a time-dependent simulation, we illustrate this effect and show that it may not be permanent.Comment: To appear in ApJ
    • …
    corecore