937 research outputs found
Destabilizing the autoinhibitory conformation of Zap70 induces up-regulation of inhibitory receptors and T cell unresponsiveness.
Zap70 plays a critical role in normal T cell development and T cell function. However, little is known about how perturbation of allosteric autoinhibitory mechanisms in Zap70 impacts T cell biology. Here, we analyze mice with a hypermorphic Zap70 mutation, W131A, which destabilizes the autoinhibitory conformation of Zap70, rendering the kinase in a semiactive state. W131A mutant mice with wild-type T cell receptor (TCR) repertoires exhibited relatively normal T cell development. However, crossing the W131A mutant mice to OTII TCR transgenic mice resulted in increased negative selection of OTII+ thymocytes and in increased thymic and peripheral T regulatory cells. Strikingly, increased basal TCR signaling was associated with a marked increase in inhibitory receptor expression and with T cells that were relatively refractory to TCR stimulation. PD-1 inhibitory receptor blockade partially reversed T cell unresponsiveness. Collectively, disruption of normal Zap70 autoinhibition engaged negative feedback mechanisms by which negative selection and inhibitory receptors restrain TCR signaling to enforce both central and peripheral tolerance
Recommended from our members
Reporters of TCR signaling identify arthritogenic T cells in murine and human autoimmune arthritis.
How pathogenic cluster of differentiation 4 (CD4) T cells in rheumatoid arthritis (RA) develop remains poorly understood. We used Nur77-a marker of T cell antigen receptor (TCR) signaling-to identify antigen-activated CD4 T cells in the SKG mouse model of autoimmune arthritis and in patients with RA. Using a fluorescent reporter of Nur77 expression in SKG mice, we found that higher levels of Nur77-eGFP in SKG CD4 T cells marked their autoreactivity, arthritogenic potential, and ability to more readily differentiate into interleukin-17 (IL-17)-producing cells. The T cells with increased autoreactivity, nonetheless had diminished ex vivo inducible TCR signaling, perhaps reflective of adaptive inhibitory mechanisms induced by chronic autoantigen exposure in vivo. The enhanced autoreactivity was associated with up-regulation of IL-6 cytokine signaling machinery, which might be attributable, in part, to a reduced amount of expression of suppressor of cytokine signaling 3 (SOCS3)-a key negative regulator of IL-6 signaling. As a result, the more autoreactive GFPhi CD4 T cells from SKGNur mice were hyperresponsive to IL-6 receptor signaling. Consistent with findings from SKGNur mice, SOCS3 expression was similarly down-regulated in RA synovium. This suggests that despite impaired TCR signaling, autoreactive T cells exposed to chronic antigen stimulation exhibit heightened sensitivity to IL-6, which contributes to the arthritogenicity in SKG mice, and perhaps in patients with RA
Photoproduction and Radiative Decay of Spin 1/2 and 3/2 Pentaquarks
We study photoproduction and radiative decays of pentauqarks paying
particular attention to the differences between spin-1/2 and spin-3/2, positive
and negative parities of pentaquarks. Detailed study of these processes can not
only give crucial information about the spin, but also the parity of
pentaquarks.Comment: 14 pages, 7 figure
The cytochrome p450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease
Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted
The offloading model for dynein function: differential function of motor subunits
During mitosis in budding yeast, dynein moves the mitotic spindle into the mother-bud neck. We have proposed an offloading model to explain how dynein works. Dynein is targeted to the dynamic plus end of a cytoplasmic microtubule, offloads to the cortex, becomes anchored and activated, and then pulls on the microtubule. Here, we perform functional studies of dynein intermediate chain (IC) and light intermediate chain (LIC). IC/Pac11 and LIC/Dyn3 are both essential for dynein function, similar to the heavy chain (HC/Dyn1). IC and LIC are targeted to the distal plus ends of dynamic cytoplasmic microtubules, as is HC, and their targeting depends on HC. Targeting of HC to the plus end depends on IC, but not LIC. IC also localizes as stationary dots at the cell cortex, the presumed result of offloading in our model, as does HC, but not LIC. Localization of HC to cortical dots depends on both IC and LIC. Thus, the IC and LIC accessory chains have different but essential roles in dynein function, providing new insight into the offloading model
Custom Integrated Circuits
Contains reports on six research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-84-C-0004)Analog Devices, Inc.Defense Advanced Research Projects Agency (Contract N00014-80-C-0622)National Science Foundation (Grant ECS83-10941
The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast
During mitosis in Saccharomyces cerevisiae, the mitotic spindle moves into the mother–bud neck via dynein-dependent sliding of cytoplasmic microtubules along the cortex of the bud. Here we show that Pac1, the yeast homologue of the human lissencephaly protein LIS1, plays a key role in this process. First, genetic interactions placed Pac1 in the dynein/dynactin pathway. Second, cells lacking Pac1 failed to display microtubule sliding in the bud, resulting in defective mitotic spindle movement and nuclear segregation. Third, Pac1 localized to the plus ends (distal tips) of cytoplasmic microtubules in the bud. This localization did not depend on the dynein heavy chain Dyn1. Moreover, the Pac1 fluorescence intensity at the microtubule end was enhanced in cells lacking dynactin or the cortical attachment molecule Num1. Fourth, dynein heavy chain Dyn1 also localized to the tips of cytoplasmic microtubules in wild-type cells. Dynein localization required Pac1 and, like Pac1, was enhanced in cells lacking the dynactin component Arp1 or the cortical attachment molecule Num1. Our results suggest that Pac1 targets dynein to microtubule tips, which is necessary for sliding of microtubules along the bud cortex. Dynein must remain inactive until microtubule ends interact with the bud cortex, at which time dynein and Pac1 appear to be offloaded from the microtubule to the cortex
First-principles characterization of a heteroceramic interface: ZrO2(001) deposited on an alpha-Al2O3(1(1)over-bar02) substrate
A Study To Assess The Knowledge On Post-Operative Self-Care Activities Among Patients Who Have Undergone Cataract Surgery At A Selected Hospital, Malaysia.
Introduction: Cataract is the leading cause of blindness (WHO, 2011). It will give an impact on physical and emotional status of an individual with cataract. World Health Organization also has the mission towards eliminating blindness by year 2020. Purpose: The purpose of this study is to assess the knowledge of post-operative self-care activities among patients who have undergone cataract surgery in a selected hospital, Malaysia. The theoretical framework used is Dorothea Orem’s self-care model. Methodology: A cross sectional design was used in this study. Non-probability convenient sampling method was used to choose 90 subjects. Data was collected by face-to face interview using Cataract Postoperative Self-care Knowledge Questionnaire. The results were analysed using descriptive statistics with (SPSS) 16.0 version 2007 and data were presented in tables and pie charts. Results: The results showed that most of the subjects did not restrict their diet after the cataract surgery and knew that infection or injury might occur after surgery. There were 43% of the subjects, who have chosen the correct technique of cleaning the eye before instilling the eye drops or ointment. Most of the subjects knew the importance of hand hygiene before instillation of eye drops. All subjects knew the importance of regular follow up after surgery. Conclusion: There is a need for re-inforcement to the patients through education to improve the knowledge on post-operative self-care following cataract surgery. Nurses need to be supportive and educative in caring for these patients. Key words: Knowledge, cataract, self-car
- …
