51 research outputs found

    Sparteine exerts anticancer effect on human cervical cancer cells via induction of apoptosis, G0/G1 cell cycle arrest and inhibition of VEGFR2 signalling pathway

    Get PDF
    Purpose: To investigate the anticancer effects of sparteine against human cervical cancer. Methods: Cell viability was determined by CCK8 assay, while 4′, 6-diamidino-2-phenylindole (DAPI) staining was used for determination of apoptosis. Cell cycle analysis was done with flow cytometry, while cell invasion was monitored using Transwell invasion assays. Protein expressions were determined using Western blotting. Results: The results revealed that sparteine inhibited the viability of cervical cancer cells with halfmaximal inhibitory concentration (IC50) ranging from 10 to 25 µM. Sparteine exerted more profound antiproliferative effects on DoTc2 cells, with IC50 of 10 µM. However, minimal cytotoxicity was observed in normal cervical cells, as evident from the IC50 of 80 µM. Sparteine triggered the generation of ROS and apoptotic cell death in DoTc2 cells. The induction of apoptosis was accompanied by upregulation of Bax expression and downregulation of Bcl-2 expression. Sparteine caused arrest of DoTc2 cells at the G0/G1 phase of the cell cycle, and suppressed the expressions of cyclin A and cyclin B1. Transwell assay data showed that sparteine decreased the invasion ability of DoTc2 cells. Sparteine also inhibited the phosphorylation of VGFR2 in a concentration-dependent manner. Conclusion: Sparteine exhibits significant anticancer activity and may prove beneficial in cervical cancer chemotherapy

    Crosstalk Impacts on Homogeneous Weakly-Coupled Multicore Fiber Based IM/DD System

    Full text link
    We numerically discussed crosstalk impacts on homogeneous weakly-coupled multicore fiber based intensity modulation/direct-detection (IM/DD) systems taking into account mean crosstalk power fluctuation, walk-off between cores, laser frequency offset, and laser linewidth.Comment: 3 pages, 11 figures

    Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier

    Get PDF
    High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments

    Comparative Analysis of the Genomes of Two Field Isolates of the Rice Blast Fungus Magnaporthe oryzae.

    Get PDF
    Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family

    Hybrid Steepest-Descent Methods for Solving Variational Inequalities Governed by Boundedly Lipschitzian and Strongly Monotone Operators

    Get PDF
    Let H be a real Hilbert space and let F:H→H be a boundedly Lipschitzian and strongly monotone operator. We design three hybrid steepest descent algorithms for solving variational inequality VI(C,F) of finding a point x∗∈C such that 〈Fx∗,x−x∗〉≥0, for all x∈C, where C is the set of fixed points of a strict pseudocontraction, or the set of common fixed points of finite strict pseudocontractions. Strong convergence of the algorithms is proved

    A meta-analysis of the association of CKM gene rs8111989 polymorphism with sport performance

    No full text
    The muscle-specific creatine kinase (CKM) A/G variants (rs8111989) have been associated with skeletal muscle performance in humans; they are correlated with physical performance and contribute to differences in the maximum oxygen uptake (VO2max) responses during power or endurance training. However, there is not enough definitive evidence to demonstrate whether the A and G allelic variants of the CKM gene rs8111989 are indeed genetic factors that can influence human physical performance. In our study, we identified 9 articles on CKM in a literature search, and conducted two meta-analyses on the CKM rs8111989 A/G allele or genotype differences between power or endurance athletes and general controls. We found that the power athletes had a significantly higher frequency of the G allele (OR, 1.14; 95% CI, 1.02-1.28, P=0.03) and GG genotype (OR, 1.54; 95% CI, 1.24-1.91, P<0.0001) compared to controls, but there was no significant difference for the endurance athletes (G allele, OR, 0.95, 95%CI, 0.85-1.06, P=0.34; GG genotype, OR, 1.00, 95%CI, 0.78-1.27, P=1.00). The results provide additional evidence to support the notion that human physical performance might be influenced by genetic profiles, especially in power sports

    64 Core ultra dense multicore fiber design for optical fronthaul systems

    No full text
    To make the most of spatial efficiency, we design 64-core trench-assisted multi-core fiber with the maximum crosstalk less than -14dB/20km, which is appropriate for the optical wireless fronthaul systems with inherent MIMO function.Published versio
    corecore