3,220 research outputs found

    Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and Cell Cycle Arrest in Prostate Cancer Cells

    Get PDF
    Purpose: To evaluate the anticancer activity of linalool against human prostate cancer (DU145) cells.Methods: The anticancer activity of linalool against DU145 cancer cells was evaluated by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry, using propidium iodide and Annexin V-FITC, was applied to study apoptosis and cell cycle phase distribution. Inverted light microscopy was used to study the effect of linalool on cell morphology and apoptotic body formation in DU145 cells while gel electrophoresis was employed to evaluate the effect of linalool on DNA fragmentation.Results: Linalool induced a dose-dependent as well as time-dependent growth inhibitory effect on DU145 prostate cancer cells. It induced sub-G1 phase growth arrest which led to increase in sub-G0/G1 cell population after treatment with increasing doses of linalool. DNA ladder appeared to be more evident with increasing linalool concentration. However, no DNA fragments were observed in the control groups. It was observed that 4.36, 11.54, 21.88 and 15.54 % of the cells underwent early apoptosis after treatment with 0 (no linalool treatment), 20, 40, and 80 μM of linalool, respectively. Compared to control cells, linalool treatment resulted in the appearance of cell shrinkage along with membrane blebbing which are characteristic features of cell apoptosis.Conclusion: The findings of this study indicate that linalool can be developed as a plant-based chemotherapeutic agent against prostate cancerKeywords: Prostate cancer, Linalool, Chemotherapy, Cell cycle, Apoptosis, DNA fragmentation, Sub- G1 phase growt

    SEARCHING FOR DEBRIS DISKS AROUND SEVEN RADIO PULSARS

    Get PDF
    We report on our searches for debris disks around seven relatively nearby radio pulsars, which are isolated sources that were carefully selected as targets on the basis of our deep Ks-band imaging survey. The Ks images obtained with the 6.5m Baade Magellan Telescope at Las Campanas Observatory are analyzed together with the Spitzer/IRAC images at 4.5 and 8.0μm and the WISE images at 3.4, 4.6, 12, and 22μm. No infrared counterparts of these pulsars are found, with flux upper limits of ∼μJy at near-infrared (λ < 10μm) and ∼10–1000μJy at mid-infrared wavelengths (λ > 10 μm). The results of this search are discussed in terms of the efficiency of converting the pulsar spin-down energy to thermal energy and X-ray heating of debris disks, with a comparison made of the two magnetars 4U 0142+61 and 1E 2259+586, which are suggested to harbor a debris disk.published_or_final_versio

    Investigation on the Dispersal Characteristics of Liquid Breakup in Vacuum

    Get PDF
    This work presents an experimental study on the dispersal characteristics of a liquid jet ejecting into vacuum. The liquid breaking experiments of several kinds of liquid under different pressure and temperature conditions are carried out in a flash chamber. The stability of the jet and the sizes of the droplets or the icing particles formed during liquid flashing dispersing are analyzed. The influences of the superheat degree, spray velocity, and the mass of the volatile liquid mixing in the nonvolatile liquid on these characteristics are discussed. Moreover, the applicability of the two definitions of superheat degree is discussed. The results show that the superheat degree is an important parameter influencing the pattern of the breaking liquid, and the jet velocity has a large influence on the distribution of particle sizes. In addition, mixing some volatile liquid with nonvolatile liquid can enhance the dispersion of the latter

    Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer

    Get PDF
    In emerging optoelectronic applications, such as water photolysis, exciton fission and novel photovoltaics involving low-dimensional nanomaterials, hot-carrier relaxation and extraction mechanisms play an indispensable and intriguing role in their photo-electron conversion processes. Two-dimensional transition metal dichalcogenides have attracted much attention in above fields recently; however, insight into the relaxation mechanism of hot electron-hole pairs in the band nesting region denoted as C-excitons, remains elusive. Using MoS2 monolayers as a model two-dimensional transition metal dichalcogenide system, here we report a slower hot-carrier cooling for C-excitons, in comparison with band-edge excitons. We deduce that this effect arises from the favourable band alignment and transient excited-state Coulomb environment, rather than solely on quantum confinement in two-dimension systems. We identify the screening-sensitive bandgap renormalization for MoS2 monolayer/graphene heterostructures, and confirm the initial hot-carrier extraction for the C-exciton state with an unprecedented efficiency of 80%, accompanied by a twofold reduction in the exciton binding energy

    Genetic enrichment of cardiomyocytes derived from mouse embryonic stem cells

    Get PDF
    Pluripotent embryonic stem cells (ESC) have the ability to differentiate into a variety of cell lineages in vitro, including cardiomyocytes. Successful applications of ESC-derived cardiomyocytes in cell therapy and tissue engineering were limited by difficulties in selecting the desired cells from the heterogeneous cell population. We describe a simple method to generate relatively pure cardiomyocytes from mouse ESCs. A construct comprising mouse cardiac α-myosin heavy chain (MHC) promoter driving the neomycin resistance gene and SV40 promoter driving the hygromycin resistant gene designated pMHCneo/ SV40-hygro, was stably transfected into mouse ESCs. The transgenic ESC line, designated MN6 retained the undifferentiated state and the potential of cardiogenic differentiation. After G418 selection, more than 99% of cells expressed α-sarcomeric actin. Immunocytological and ultrastructural analysis demonstrated that, the selected cardiomyocytes were highly differentiated. Our results represent a simple genetic manipulation used to product essentially pure cardiomyocytes from differentiating ESCs. It may facilitate the development of cell therapy in heart diseases.Key words: Embryonic stem cells, α-myosin heavy chain promoter, cardiomyocytes, differentiation, genetic enrichment

    A Simple Method to Synthesize Cadmium Hydroxide Nanobelts

    Get PDF
    Cd(OH)2nanobelts have been synthesized in high yield by a convenient polyol method for the first time. XRD, XPS, FESEM, and TEM were used to characterize the product, which revealed that the product consisted of belt-like crystals about 40 nm in thickness and length up to several hundreds of micrometers. Studies found that the viscosity of the solvent has important influence on the morphology of the final products. The optical absorption spectrum indicates that the Cd(OH)2nanobelts have a direct band gap of 4.45 eV
    corecore