2,698 research outputs found
Unconventional Cosmology
I review two cosmological paradigms which are alternative to the current
inflationary scenario. The first alternative is the "matter bounce", a
non-singular bouncing cosmology with a matter-dominated phase of contraction.
The second is an "emergent" scenario, which can be implemented in the context
of "string gas cosmology". I will compare these scenarios with the inflationary
one and demonstrate that all three lead to an approximately scale-invariant
spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer
School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept.
12 - 17 2012, to be publ. in the proceedings; these lecture notes form an
updated version of arXiv:1003.1745 and arXiv:1103.227
Magnetic resonance imaging of glutamate in neuroinflammation
AbstractInflammation in central nervous system (CNS) is one of the most severe diseases, and also plays an impellent role in some neurodegenerative diseases. Glutamate (Glu) has been considered relevant to the pathogenesis of neuroinflammation. In order to diagnose neuroinflammation incipiently and precisely, we review the pathobiological events in the early stages of neuroinflammation, the interactions between Glu and neuroinflammation, and two kinds of magnetic resonance techniques of imaging Glu (chemical exchange saturation transfer and magnetic resonance spectroscopy)
Thermally assisted magnetization reversal in the presence of a spin-transfer torque
We propose a generalized stochastic Landau-Lifshitz equation and its
corresponding Fokker-Planck equation for the magnetization dynamics in the
presence of spin transfer torques. Since the spin transfer torque can pump a
magnetic energy into the magnetic system, the equilibrium temperature of the
magnetic system is ill-defined. We introduce an effective temperature based on
a stationary solution of the Fokker-Planck equation. In the limit of high
energy barriers, the law of thermal agitation is derived. We find that the
N\'{e}el-Brown relaxation formula remains valid as long as we replace the
temperature by an effective one that is linearly dependent of the spin torque.
We carry out the numerical integration of the stochastic Landau-Lifshitz
equation to support our theory. Our results agree with existing experimental
data.Comment: 5 figure
Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fuelling
This is the post-print version of the final paper published in Fuel. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.In this work, the effects of a standard ultra-low sulphur diesel (ULSD) fuel and a new, ultra-clean synthetic GTL (gas-to-liquid) fuel on the performance, combustion and emissions of a single-cylinder, direct injection, diesel engine were studied under different operating conditions with addition of simulated reformer product gas, referred to as reformed EGR (REGR). For this purpose various levels of REGR of two different compositions were tested. Tests with standard EGR were also carried out for comparison. Experiments were performed at four steady state operating conditions and the brake thermal efficiency, combustion process and engine emission data are presented and discussed. In general, GTL fuel resulted in a higher brake thermal efficiency compared to ULSD but the differences depended on the engine condition and EGR/REGR level and composition. The combustion pattern was significantly modified when the REGR level was increased. Although the extent of the effects of REGR on emissions depended on the engine load, it can be generally concluded that an optimal combination of GTL and REGR significantly improved both NOx and smoke emissions. In some cases, NOx and smoke emission reductions of 75% and 60%, respectively, were achieved compared to operation with ULSD without REGR. This offers a great potential for engine manufacturers to meet the requirements of future emission regulations.Shell Global Solutions UK, the Government of Castilla-La Mancha (Spain) and the Royal Thai Government
A Cluster Method for the Ashkin--Teller Model
A cluster Monte Carlo algorithm for the Ashkin-Teller (AT) model is
constructed according to the guidelines of a general scheme for such
algorithms. Its dynamical behaviour is tested for the square lattice AT model.
We perform simulations on the line of critical points along which the exponents
vary continuously, and find that critical slowing down is significantly
reduced. We find continuous variation of the dynamical exponent along the
line, following the variation of the ratio , in a manner which
satisfies the Li-Sokal bound , that was so far
proved only for Potts models.Comment: 18 pages, Revtex, figures include
Magnetic phase diagram in EuLaFeAs single crystals
We have systematically measured resistivity, susceptibility and specific heat
under different magnetic fields (H) in EuLaFeAs single
crystals. It is found that a metamagnetic transition from A-type
antiferromagnetism to ferromagnetism occurs at a critical field for magnetic
sublattice of . The jump of specific heat is suppressed and shifts to
low temperature with increasing H up to the critical value, then shifts to high
temperature with further increasing H. Such behavior supports the metamagnetic
transition. Detailed H-T phase diagrams for x=0 and 0.15 crystals are given,
and possible magnetic structure is proposed. Magnetoresistance measurements
indicate that there exists a strong coupling between local moment of
and charge in Fe-As layer. These results are very significant to understand the
underlying physics of FeAs superconductors.Comment: 5 pages, 4 figure
Some effects of different constitutive laws on simulating mitral valve dynamics with FSI
In this paper, three different constitutive laws for mitral leaflets and two laws for chordae tendineae are selected to study their effects on mitral valve dynamics with fluid-structure interaction. We first fit these three mitral leaflet constitutive laws and two chordae tendineae laws with experimental data. The fluid-structure interaction is implemented in an immersed boundary framework with finite element extension for solid, that is the hybrid immersed boundary/finite element(IB/FE) method. We specifically compare the fluid-structure results of different constitutive laws since fluid-structure interaction is the physiological loading environment. This allows us to look at the peak jet velocity, the closure regurgitation volume, and the orifice area. Our numerical results show that different constitutive laws can affect mitral valve dynamics, such as the transvalvular flow rate, closure regurgitation and the orifice area, while the differences in fiber strain and stress are insignificant because all leaflet constitutive laws are fitted to the same set of experimental data. In addition, when an exponential constitutive law of chordae tendineae is used, a lower closure regurgitation flow is observed compared to that of a linear material model. In conclusion, combining numerical dynamic simulations and static experimental tests, we are able to identify suitable constitutive laws for dynamic behaviour of mitral leaflets and chordae under physiological conditions
Modification to the power spectrum in the brane world inflation driven by the bulk inflaton
We compute the cosmological perturbations generated in the brane world
inflation driven by the bulk inflaton. Different from the model that the
inflation is a brane effect, we exhibit the modification of the power spectrum
of scalar perturbations due to the existence of the fifth dimension. With the
change of the initial vacuum, we investigate the dependence of the correction
of the power spectrum on the choice of the vacuum.Comment: replaced with the revised version, accepted for publication in PR
Orthorhombically Mixed s and d Wave Superconductivity and Josephson Tunneling
The effect of orthorhombicity on Josephson tunneling in high T
superconductors such as YBCO is studied for both single crystals and highly
twinned crystals. It is shown that experiments on highly twinned crystals
experimentally determine the symmetry of the superconducting twin boundaries
(which can be either even or odd with respect to a reflection in the twinning
plane). Conversely, Josephson experiments on highly twinned crystals can not
experimentally determine whether the superconductivity is predominantly
-wave or predominantly -wave. The direct experimental determination of
the order-parameter symmetry by Josephson tunneling in YBCO thus comes from the
relatively few experiments which have been carried out on untwinned single
crystals.Comment: 5 pages, RevTeX file, 1 figure available on request
([email protected]
- …