11 research outputs found

    Polyaniline electrochemically deposited on tailored metal mesh for dynamically stretchable supercapacitors

    Get PDF
    © 2019 The Electrochemical Society. As power source for integrated wearable electronics, stretchable supercapacitors have gained significant attention. Here, an in-plane compression strategy is proposed to make highly stretchable current collectors from commercially available stainless steel mesh. Polyaniline is deposited on the compressed metal mesh to produce stretchable pseudo-capacitive electrode with 100% stretching deformation capability. An intrinsically stretchable supercapacitor is demonstrated using such electrodes and poly(vinyl alcohol)H3PO4 polymer gel electrolyte. The assembled supercapacitor shows an areal capacitance of 13.5 mF cm−2 at a current density of 0.1 mA cm−2. It can maintain 89% of its initial capacitance after 1000 stretching/releasing cycles at a high strain of 100%. It can also endure a dynamic stretching rate of 7.5% s−1 with a capacitance retention of 92.9%. This work proves the potential of fabricating stretchable devices with commodity materials

    How to deal with future possible coronavirus: hints from the analysis of the interaction between potential inhibitors with 3C-Like protease via molecular docking

    No full text
    The COVID-19 pandemic has resulted in millions of infections and deaths. However, there is still a lack of broad-spectrum effective and safe anti-CoV drugs. 3CL protease is one of the promising targets for the development of anti-CoV drugs. In this study, we explored the binding effects of 36 potential inhibitors with five hu-man coronavirus 3CL proteases (SARS-CoV-2, MERS-CoV, SARS-CoV, HCoV-HKU1 and HCoV-229E) via molecular docking using SwissDock. The correlation study demonstrated that small molecule inhibitors with higher molecular weight were likely to be more effective. Based on the fact that SARS-CoV-2 3CLpro had the poorest binding tendency and affinity with ligands, we predicted that the CoVs will become more and more difficult to overcome as they evolve. The interaction analysis showed that the lethal human coronavirus 3CL proteases had higher hydrogen bonding interaction propensity on Glu16X. These findings offer interesting perspectives for future drug design strategies against human coronavirus

    Comprehensive Understanding of the Kinetic Behaviors of Main Protease from SARS-CoV-2 and SARS-CoV: New Data and Comparison to Published Parameters

    No full text
    The main protease (Mpro) is a promising drug target for inhibiting the coronavirus due to its conserved properties and lack of homologous genes in humans. However, previous studies on Mpro’s kinetic parameters have been confusing, hindering the selection of accurate inhibitors. Therefore, obtaining a clear view of Mpro’s kinetic parameters is necessary. In our study, we investigated the kinetic behaviors of Mpro from SARS-CoV-2 and SARS-CoV using both FRET-based cleavage assay and the LC-MS method, respectively. Our findings indicate that the FRET-based cleavage assay could be used for preliminary screening of Mpro inhibitors, while the LC-MS method should be applied to select the effective inhibitors with higher reliability. Furthermore, we constructed the active site mutants (H41A and C145A) and measured the kinetic parameters to gain a deeper understanding of the atomic-level enzyme efficiency reduction compared to the wild type. Overall, our study provides valuable insights for inhibitor screening and design by offering a comprehensive understanding of Mpro’s kinetic behaviors

    RISK-INFORMED STRENGTH DESIGN OF HOT MOLTEN SALT STORAGE TANK FOR CSP PLANTS

    No full text
    Hot molten salt storage tank is the key energy storage equipment in solar thermal power stations. The accidents of similar equipment indicates that there is a risk of periodic cracking for storage tanks based on general strength design specifications. Based on the high-temperature structural strength design theory, risk-informed design methods were introduced to a 100 MW CSP plant. Quantitative control indicators for risk sources were reversely calculated. The results show that when the equivalent friction coefficient of bottom plate is greater than 0.65, the tank could have ratchet damage during heat-up stage. When the thickness of sand layer is greater than 60 mm, the sidewall of the storage tank could be instantaneously fractured. The range of temperature fluctuation should be limited between-20℃ and +25℃ to avoid high cycle fatigue fracture and buckling. Meanwhile, it is recommended to appropriately increase the center height of the tank bottom(<29 mm) to prevent thermal stress failure

    Analysis of Components and Properties of Extractives from Alnus cremastogyne Pods from Different Provenances

    No full text
    Chemical components with anti-oxidant, anti-inflammatory, and anti-cancer properties extracted from Alnus bark and leaves have been extensively studied. However, less attention has been paid to extractives from Alnus pods, which are mostly treated as waste. Here, extractives of Alnus cremastogyne pods from 12 provenances in Sichuan Province were studied for high value-added utilization of Alnus waste. The extractives were analyzed by Gas Chromatography-Mass Spectrometer (GC-MS), Ultraviolet-visible spectroscopy (UV-Vis spectra), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity. A total of 58, 49, and 51 chemical components were found when the organic solvents of ethanol, petroleum ether, and ethyl acetate were used to collect extractives, respectively. These chemical components including Phytol, CIS-5,8,11,14,17-eicosapentaenoic acid, Germacrene D, Lupeol, and β-sitosterol, etc., have wide applications in the fields of pharmacy and cosmetics. Moreover, it was also found that extractives in ethanol and ethyl acetate had impressive UV resistance, especially for UV-C and UV-B blocking. The results showed that the maximum block ratio towards UV-C and UV-B could reach 99%. In addition, the ethanol extract showed good anti-oxidant activity with a maximum free radical scavenging rate of 96.19%. This comprehensive and systematic study on extractives from Alnus cremastogyne pods promotes the development of high-value utilization of Alnus components

    The F-box protein gene exo-1 is a target for reverse engineering enzyme hypersecretion in filamentous fungi

    No full text
    Carbohydrate active enzymes (CAZymes) are vital for the lignocellulose-based biorefinery. The development of hypersecreting fungal protein production hosts is therefore a major aim for both academia and industry. However, despite advances in our understanding of their regulation, the number of promising candidate genes for targeted strain engineering remains limited. Here, we resequenced the genome of the classical hypersecreting Neurospora crassa mutant exo-1 and identified the causative point of mutation to reside in the F-box protein-encoding gene, NCU09899. The corresponding deletion strain displayed amylase and invertase activities exceeding those of the carbon catabolite derepressed strain Δcre-1, while glucose repression was still mostly functional in Δexo-1 Surprisingly, RNA sequencing revealed that while plant cell wall degradation genes are broadly misexpressed in Δexo-1, only a small fraction of CAZyme genes and sugar transporters are up-regulated, indicating that EXO-1 affects specific regulatory factors. Aiming to elucidate the underlying mechanism of enzyme hypersecretion, we found the high secretion of amylases and invertase in Δexo-1 to be completely dependent on the transcriptional regulator COL-26. Furthermore, misregulation of COL-26, CRE-1, and cellular carbon and nitrogen metabolism was confirmed by proteomics. Finally, we successfully transferred the hypersecretion trait of the exo-1 disruption by reverse engineering into the industrially deployed fungus Myceliophthora thermophila using CRISPR-Cas9. Our identification of an important F-box protein demonstrates the strength of classical mutants combined with next-generation sequencing to uncover unanticipated candidates for engineering. These data contribute to a more complete understanding of CAZyme regulation and will facilitate targeted engineering of hypersecretion in further organisms of interest

    NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results

    Full text link
    This paper reviews the challenge on constrained high dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2022. This manuscript focuses on the competition set-up, datasets, the proposed methods and their results. The challenge aims at estimating an HDR image from multiple respective low dynamic range (LDR) observations, which might suffer from under- or over-exposed regions and different sources of noise. The challenge is composed of two tracks with an emphasis on fidelity and complexity constraints: In Track 1, participants are asked to optimize objective fidelity scores while imposing a low-complexity constraint (i.e. solutions can not exceed a given number of operations). In Track 2, participants are asked to minimize the complexity of their solutions while imposing a constraint on fidelity scores (i.e. solutions are required to obtain a higher fidelity score than the prescribed baseline). Both tracks use the same data and metrics: Fidelity is measured by means of PSNR with respect to a ground-truth HDR image (computed both directly and with a canonical tonemapping operation), while complexity metrics include the number of Multiply-Accumulate (MAC) operations and runtime (in seconds).Comment: CVPR Workshops 2022. 15 pages, 21 figures, 2 table
    corecore