31 research outputs found

    Evolutionary History of Rabies in Ghana

    Get PDF
    Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007–2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme

    Reconciling the biogeography of an invader through recent and historic genetic patterns: the case of topmouth gudgeon Pseudorasbora parva

    Get PDF
    © 2018 The Author(s) The genetic variability and population structure of introduced species in their native range are potentially important determinants of their invasion success, yet data on native populations are often poorly represented in relevant studies. Consequently, to determine the contribution of genetic structuring in the native range of topmouth gudgeon Pseudorasbora parva to their high invasion success in Europe, we used a dataset comprising of 19 native and 11 non-native populations. A total of 666 samples were analysed at 9 polymorphic microsatellite loci and sequenced for 597 bp of mitochondrial DNA. The analysis revealed three distinct lineages in the native range, of which two haplogroups were prevalent in China (100%), with a general split around the Qinling Mountains. Dating of both haplogroups closely matched past geological events. More recently, its distribution has been influenced by fish movements in aquaculture, resulting in gene flow between previously separated populations in Northern and Southern China. Their phylogeography in Europe indicate as few as two introductions events and two dispersal routes. Microsatellite data revealed native populations had higher genetic diversity than those in the invasive range, a contrast to previous studies on P. parva. This study confirms the importance of extensive sampling in both the native and non-native range of invasive species in evaluating the influence of genetic variability on invasion success

    Colonisation of the non-indigenous pacific oyster Crassostrea gigas determined by predation, size and initial settlement densities

    No full text
    Survival of incipient non-indigenous populations is dramatically altered by early predation on new colonisers. These effects can be influenced by morphological traits, such as coloniser size and density. The Australian non-native Pacific Oyster Crassostrea gigas is generally more fecund and faster growing compared to the native Saccostrea glomerata found in the same habitat. It is therefore important to quantify how the two species differ in survival across coloniser density and predation gradients. This information could become pertinent to the management of wild and aquaculture populations of the non-native C. gigas . Using a field-based factorial experiment we model the survival of incipient populations of both the native S. glomerata and the non-indigenous C. gigas as a function of coloniser density, predator reduction and individual size. Unexpectedly, survival of the non-indigenous C. gigas increased compared to S. glomerata when individuals were larger. The proportional survival of newly colonised oyster populations also increased with larger initial populations, regardless of species identity. Further, predator reduction resulted in increased survival of both oyster species, irrespective of coloniser size or initial density. Here we quantitatively demonstrate the effects of recruit density and size on enhancing the survivability of incipient oyster populations. © 2014 Hedge, Johnston

    Uncovering hidden heterogeneity: Geo-statistical models illuminate the fine scale effects of boating infrastructure on sediment characteristics and contaminants

    No full text
    Infrastructure associated with coastal communities is likely to not only directly displace natural systems, but also leave environmental footprints' that stretch over multiple scales. Some coastal infrastructure will, there- fore, generate a hidden layer of habitat heterogeneity in sediment systems that is not immediately observable in classical impact assessment frameworks. We examine the hidden heterogeneity associated with one of the most ubiquitous coastal modifications; dense swing moorings fields. Using a model based geo-statistical framework we highlight the variation in sedimentology throughout mooring fields and reference locations. Moorings were correlated with patches of sediment with larger particle sizes, and associated metal(loid) concentrations in these patches were depressed. Our work highlights two important ideas i) mooring fields create a mosaic of habitat in which contamination decreases and grain sizes increase close to moorings, and ii) model- based frameworks provide an information rich, easy-to-interpret way to communicate complex analyses to stakeholders

    Fine-scale effects of boat moorings on soft sediment communities masked in large-scale comparisons

    No full text
    Population growth is driving the demand for recreational marine infrastructure, resulting in extensive coastal habitat modification. Boat moorings, for example, are popular for vessel storage and are known to damage seagrass communities, yet little is known about how they influence unvegetated sediment habitats. Here we investigate the effects of boat moorings on sediment infauna using metrics of community composition, diversity, total abundance and abundances of individual functional groups and dominant taxa. Metrics were compared at fine and larger spatial scales, to investigate how spatial variability affects the ecological assessments in soft-sedimentary environments. Fine-scale models revealed changes in community composition and mollusk abundance with the distance from moorings, while sediment grain size was also an important predictor for composition, bivalve and polychaete abundances, although the direction of effects varied. When the same metrics were compared at larger scales (i.e., boating infrastructure present or lacking) we found that spatial variability among locations was detected, but no effect for moorings. With increased urbanization and industrialization of coastal areas there is a clear need to account for the scale of potential ecological effects in investigations of coastal infrastructure developments

    Altered fish community and feeding behaviour in close proximity to boat moorings in an urban estuary

    No full text
    Coastal urbanization has led to large-scale transformation of estuaries, with artificial structures now commonplace. Boat moorings are known to reduce seagrass cover, but little is known about their effect on fish communities. We used underwater video to quantify abundance, diversity, composition and feeding behaviour of fish assemblages on two scales: with increasing distance from moorings on fine scales, and among locations where moorings were present or absent. Fish were less abundant in close proximity to boat moorings, and the species composition varied on fine scales, leading to lower predation pressure near moorings. There was no relationship at the location with seagrass. On larger scales, we detected no differences in abundance or community composition among locations where moorings were present or absent. These findings show a clear impact of moorings on fish and highlight the importance of fine-scale assessments over location-scale comparisons in the detection of the effects of artificial structures

    NEW NON-SUPERCONDUCTING LAYERED BI-OXIDE PHASES OF FORMULA BI2M3CO2OY CONTAINING CO INSTEAD OF CU

    No full text
    We report the cationic substitution of Cu by Co within the 85K Bi based high Tc oxides to produce new phases of general formula Bi2M3Co2Oy with M = Ca, Sr and Ba. Single crystals of these phases, grown using Co3O4 (excess) flux, were investigated for their structural, magnetic and electrical properties. The subcell appears similar to that of Bi2Sr2CaCu2Oy phase but the superstructure is more complicated due to the presence of a more complex incommensurate structural modulation. The substitution of Cu by Co is accompanied by an uptake of additional oxygen. With M = Sr or Ca, the compounds are semiconductors, whereas when M = Ba the compound is metallic above 100K, and semiconducting below 100K. The magnetic susceptibility varies little with temperature, and shows no magnetic transitions. Photoemission measurements show that Co is in a + 3 oxidation state with a low spin configuration

    Sydney Harbour: What we do and do not know about a highly diverse estuary

    Full text link
    © 2015 CSIRO. Sydney Harbour is a global hotspot for marine and estuarine diversity. Despite its social, economic and biological value, the available knowledge has not previously been reviewed or synthesised. We systematically reviewed the published literature and consulted experts to establish our current understanding of the Harbour's natural systems, identify knowledge gaps, and compare Sydney Harbour to other major estuaries worldwide. Of the 110 studies in our review, 81 focussed on ecology or biology, six on the chemistry, 10 on geology and 11 on oceanography. Subtidal rocky reef habitats were the most studied, with a focus on habitat forming macroalgae. In total 586 fish species have been recorded from the Harbour, which is high relative to other major estuaries worldwide. There has been a lack of process studies, and an almost complete absence of substantial time series that constrains our capacity to identify trends, environmental thresholds or major drivers of biotic interactions. We also highlight a lack of knowledge on the ecological functioning of Sydney Harbour, including studies on microbial communities. A sound understanding of the complexity, connectivity and dynamics underlying ecosystem functioning will allow further advances in management for the Harbour and for similarly modified estuaries around the world

    Sydney Harbour: A review of anthropogenic impacts on the biodiversity and ecosystem function of one of the world's largest natural harbours

    No full text
    Sydney Harbour is a hotspot for diversity. However, as with estuaries worldwide, its diversity and functioning faces increasing threats from urbanisation. This is the first synthesis of threats and impacts in Sydney Harbour. In total 200 studies were reviewed: 109 focussed on contamination, 58 on habitat modification, 11 addressed non-indigenous species (NIS) and eight investigated fisheries. Metal concentrations in sediments and seaweeds are among the highest recorded worldwide and organic contamination can also be high. Contamination is associated with increased abundances of opportunistic species, and changes in benthic community structure. The Harbour is also heavily invaded, but invaders' ecological and economic impacts are poorly quantified. Communities within Sydney Harbour are significantly affected by extensive physical modification, with artificial structures supporting more NIS and lower diversity than their natural equivalents. We know little about the effects of fishing on the Harbour's ecology, and although ocean warming along Sydney is among the fastest in the world, we know little about how the ecosystem will respond to warming. The interactive and cumulative effects of stressors on ecosystem functioning and services in the Harbour are largely unknown. Sustainable management of this iconic natural system requires that knowledge gaps are addressed and translated into coherent environmental plans
    corecore