3,218 research outputs found

    Efficient All Top-k Computation - A Unified Solution for All Top-k, Reverse Top-k and Top-m Influential Queries

    Get PDF
    published_or_final_versio

    Hamilton-Jacobi Method and Gravitation

    Full text link
    Studying the behaviour of a quantum field in a classical, curved, spacetime is an extraordinary task which nobody is able to take on at present time. Independently by the fact that such problem is not likely to be solved soon, still we possess the instruments to perform exact predictions in special, highly symmetric, conditions. Aim of the present contribution is to show how it is possible to extract quantitative information about a variety of physical phenomena in very general situations by virtue of the so-called Hamilton-Jacobi method. In particular, we shall prove the agreement of such semi-classical method with exact results of quantum field theoretic calculations.Comment: To appear in the proceedings of "Cosmology, the Quantum Vacuum, and Zeta Functions": A workshop with a celebration of Emilio Elizalde's Sixtieth birthday, Bellaterra, Barcelona, Spain, 8-10 Mar 201

    Cross-language differences in the brain network subserving intelligible speech

    Get PDF
    SIGNIFICANCE: Language processing is generally left hemisphere dominant. However, whether the interactions among the typical left hemispheric language regions differ across different languages is largely unknown. An ideal method to address this question is modeling cortical interactions across language groups, but this is usually constrained by the model space with the prior hypothesis due to massive computation demands. With cloud-computing, we used functional MRI dynamic causal modeling analysis to compare more than 4,000 models of cortical dynamics among critical language regions in the temporal and frontal cortex, established the bias-free information flow maps that were shared or specific for processing intelligible speech in Chinese and English, and revealed the neural dynamics between the left and right hemispheres in Chinese speech comprehension. ABSTRACT: How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca’s and Wernicke’s areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension

    Self-Organized Ni Nanocrystal Embedded in BaTiO3 Epitaxial Film

    Get PDF
    Ni nanocrystals (NCs) were embedded in BaTiO3 epitaxial films using the laser molecular beam epitaxy. The processes involving the self-organization of Ni NCs and the epitaxial growth of BaTiO3 were discussed. With the in situ monitoring of reflection high-energy electron diffraction, the nanocomposite films were engineered controllably by the fine alternation of the self-organization of Ni NCs and the epitaxial growth of BaTiO3. The transmission electron microscopy and the X-ray diffraction characterization confirmed that the composite film consists of the Ni NCs layers alternating with the (001)/(100)-oriented epitaxial BaTiO3 separation layers

    In vitro culture of Plasmodium berghei-ANKA maintains infectivity of mouse erythrocytes inducing cerebral malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection with <it>Plasmodium berghei </it>is a widely used model of murine malaria and a powerful tool for reverse genetic and pathogenesis studies. However, the efficacy of <it>in vitro </it>reinvasion of erythrocytes is generally low, limiting <it>in vitro </it>studies.</p> <p>Methods</p> <p><it>Plasmodium berghei </it>ANKA-infected blood obtained from a susceptible infected mouse was cultured in various conditions and <it>in vitro </it>parasitaemia was measured every day to evaluate the rate of reinvasion.</p> <p>Results</p> <p>High quality culture media were used and reinvasion rates were improved by vigorous orbital shaking of the flask and increasing density of the medium with gelatin.</p> <p>Discussion</p> <p>Using these settings, reinvasion of normal mouse erythrocytes by the parasite was obtained <it>in vitro </it>over two weeks with preservation of the infectivity <it>in vivo</it>.</p

    Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions

    Get PDF
    Exploiting electrocatalysts with high activity for glucose oxidation is of central importance for practical applications such as glucose fuel cell. Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and cyclic voltammetry (CV). The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt. A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60 μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition

    Rotation and Spin in Physics

    Full text link
    We delineate the role of rotation and spin in physics, discussing in order Newtonian classical physics, special relativity, quantum mechanics, quantum electrodynamics and general relativity. In the latter case, we discuss the generalization of the Kepler formula to post-Newtonian order (c2(c^{-2}) including spin effects and two-body effects. Experiments which verify the theoretical results for general relativistic spin-orbit effects are discussed as well as efforts being made to verify the spin-spin effects
    corecore