25 research outputs found

    Measuring the Benefits of Healthcare: DALYs and QALYs – Does the Choice of Measure Matter? A Case Study of Two Preventive Interventions

    Get PDF
    Background The measurement of health benefits is a key issue in health economic evaluations. There is very scarce empirical literature exploring the differences of using quality-adjusted life years (QALYs) or disability-adjusted life years (DALYs) as benefit metrics and their potential impact in decision-making. Methods Two previously published models delivering outputs in QALYs, were adapted to estimate DALYs: a Markov model for human papilloma virus (HPV) vaccination, and a pneumococcal vaccination deterministic model (PNEUMO). Argentina, Chile, and the United Kingdom studies were used, where local EQ-5D social value weights were available to provide local QALY weights. A primary study with descriptive vignettes was done (n = 73) to obtain EQ-5D data for all health states included in both models. Several scenario analyses were carried-out to evaluate the relative importance of using different metrics (DALYS or QALYs) to estimate health benefits on these economic evaluations. Results QALY gains were larger than DALYs avoided in all countries for HPV, leading to more favorable decisions using the former. With discounting and age-weighting – scenario with greatest differences in all countries – incremental DALYs avoided represented the 75%, 68%, and 43% of the QALYs gained in Argentina, Chile, and United Kingdom respectively. Differences using QALYs or DALYs were less consistent and sometimes in the opposite direction for PNEUMO. These differences, similar to other widely used assumptions, could directly influence decision-making using usual gross domestic products (GDPs) per capita per DALY or QALY thresholds. Conclusion We did not find evidence that contradicts current practice of many researchers and decision-makers of using QALYs or DALYs interchangeably. Differences attributed to the choice of metric could influence final decisions, but similarly to other frequently used assumptions

    Lung adenocarcinoma originates from retrovirus infection of proliferating type 2 pneumocytes during pulmonary post-natal development or tissue repair

    Get PDF
    Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer

    Evolution of H3N2 Influenza Virus in a Guinea Pig Model

    Get PDF
    Studies of influenza virus evolution under controlled experimental conditions can provide a better understanding of the consequences of evolutionary processes with and without immunological pressure. Characterization of evolved strains assists in the development of predictive algorithms for both the selection of subtypes represented in the seasonal influenza vaccine and the design of novel immune refocused vaccines. To obtain data on the evolution of influenza in a controlled setting, naïve and immunized Guinea pigs were infected with influenza A/Wyoming/2003 (H3N2). Virus progeny from nasal wash samples were assessed for variation in the dominant and other epitopes by sequencing the hemagglutinin (HA) gene to quantify evolutionary changes. Viral RNA from the nasal washes from infection of naïve and immune animals contained 6% and 24.5% HA variant sequences, respectively. Analysis of mutations relative to antigenic epitopes indicated that adaptive immunity played a key role in virus evolution. HA mutations in immunized animals were associated with loss of glycosylation and changes in charge and hydrophobicity in and near residues within known epitopes. Four regions of HA-1 (75–85, 125–135, 165–170, 225–230) contained residues of highest variability. These sites are adjacent to or within known epitopes and appear to play an important role in antigenic variation. Recognition of the role of these sites during evolution will lead to a better understanding of the nature of evolution which help in the prediction of future strains for selection of seasonal vaccines and the design of novel vaccines intended to stimulated broadened cross-reactive protection to conserved sites outside of dominant epitopes
    corecore