38 research outputs found

    A myristoyl amide derivative of doxycycline potently targets cancer stem cells (CSCs) and prevents metastasis, without retaining antibiotic activity

    Get PDF
    Here, we describe the chemical synthesis and biological activity of a new Doxycycline derivative, designed specifically to more effectively target cancer stem cells (CSCs). In this analogue, a myristic acid (14 carbon) moiety is covalently attached to the free amino group of 9-amino-Doxycycline. First, we determined the IC50 of Doxy-Myr using the 3D-mammosphere assay, to assess its ability to inhibit the anchorage-independent growth of breast CSCs, using MCF7 cells as a model system. Our results indicate that Doxy-Myr is >5-fold more potent than Doxycycline, as it appears to be better retained in cells, within a peri-nuclear membranous compartment. Moreover, Doxy-Myr did not affect the viability of the total MCF7 cancer cell population or normal fibroblasts grown as 2D-monolayers, showing remarkable selectivity for CSCs. Using both gram-negative and gram-positive bacterial strains, we also demonstrated that Doxy-Myr did not show antibiotic activity, against Escherichia coli and Staphylococcus aureus. Interestingly, other complementary Doxycycline amide derivatives, with longer (16 carbon; palmitic acid) or shorter (12 carbon; lauric acid) fatty acid chain lengths, were both less potent than Doxy-Myr for the targeting of CSCs. Finally, using MDA-MB-231 cells, we also demonstrate that Doxy-Myr has no appreciable effect on tumor growth, but potently inhibits tumor cell metastasis in vivo, with little or no toxicity. In summary, by using 9-amino-Doxycycline as a scaffold, here we have developed new chemical entities for their further development as anti-cancer agents. These compounds selectively target CSCs, e.g., Doxy-Myr, while effectively minimizing the risk of driving antibiotic resistance. Taken together, our current studies provide proof-of-principle, that existing FDA-approved drugs can be further modified and optimized, to successfully target the anchorage-independent growth of CSCs and the process of tumor cell metastasis. Based on these findings, we propose that it may be more appropriate to refer to tumor-spheres as metasta-spheres, to better reflect the close relationship between 3D anchorage-independent growth and metastasis

    Assessing methods for dealing with treatment switching in randomised controlled trials: a simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigate methods used to analyse the results of clinical trials with survival outcomes in which some patients switch from their allocated treatment to another trial treatment. These included simple methods which are commonly used in medical literature and may be subject to selection bias if patients switching are not typical of the population as a whole. Methods which attempt to adjust the estimated treatment effect, either through adjustment to the hazard ratio or via accelerated failure time models, were also considered. A simulation study was conducted to assess the performance of each method in a number of different scenarios.</p> <p>Results</p> <p>16 different scenarios were identified which differed by the proportion of patients switching, underlying prognosis of switchers and the size of true treatment effect. 1000 datasets were simulated for each of these and all methods applied. Selection bias was observed in simple methods when the difference in survival between switchers and non-switchers were large. A number of methods, particularly the AFT method of Branson and Whitehead were found to give less biased estimates of the true treatment effect in these situations.</p> <p>Conclusions</p> <p>Simple methods are often not appropriate to deal with treatment switching. Alternative approaches such as the Branson & Whitehead method to adjust for switching should be considered.</p

    Movement control exercise versus general exercise to reduce disability in patients with low back pain and movement control impairment. A randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-specific low back pain (NSLBP) in subacute and chronic stages can be treated effectively with exercise therapy. Research guidelines recommend evaluating different treatments in defined subgroups of patients with NSLBP. A subgroup of patients with movement control impairment (MCI) improved significantly on patient specific function and disability in a previous case series after movement control exercises.</p> <p>Methods/Design</p> <p>In a randomised controlled trial (RCT) we will compare the effectiveness of movement control and general exercise in patients with MCI. 106 participants aged 18 - 75 will be recruited in 5 outpatient hospital departments and 7 private practices.</p> <p>Patients randomly assigned to the movement control exercise group will be instructed to perform exercises according to their MCI. The general exercise group will follow an exercise protocol aimed at improving endurance and flexibility. Patients in both groups will receive 9 - 18 treatments and will be instructed to do additional exercises at home.</p> <p>The primary outcome is the level of disability assessed using the patient specific functional scale (PSFS) which links the perceived pain to functional situations and is measured before treatment and at 6 and 12 months follow-up. Secondary outcomes concern low back pain related disability (Roland Morris questionnaire, RMQ), graded chronic pain scale (GCPS), range of motion and tactile acuity.</p> <p>Discussion</p> <p>To our knowledge this study will be the first to compare two exercise programs for a specific subgroup of patients with NSLBP and MCI. Results of this study will provide insight into the effectiveness of movement control exercise and contribute to our understanding of the mechanisms behind MCI and its relation to NSLBP.</p> <p>Trial registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN80064281">ISRCTN80064281</a></p

    An investigation of the reproducibility of ultrasound measures of abdominal muscle activation in patients with chronic non-specific low back pain

    No full text
    Ultrasound (US) measures are used by clinicians and researchers to evaluate improvements in activity of the abdominal muscles in patients with low back pain. Studies evaluating the reproducibility of these US measures provide some information; however, little is known about the reproducibility of these US measures over time in patients with low back pain. The objectives of this study were to estimate the reproducibility of ultrasound measurements of automatic activation of the lateral abdominal wall muscles using a leg force task in patients with chronic low back pain. Thirty-five participants from an existing randomised, blinded, placebo-controlled trial participated in the study. A reproducibility analysis was undertaken from all patients using data collected at baseline and after treatment. The reproducibility of measurements of thickness, muscle activation (thickness changes) and muscle improvement/deterioration after intervention (differences in thickness changes from single images made before and after treatment) was analysed. The reproducibility of static images (thickness) was excellent (ICC2,1 = 0.97, 95% CI = 0.96–0.97, standard error of the measurement (SEM) = 0.04 cm, smallest detectable change (SDC) = 0.11 cm), the reproducibility of thickness changes was moderate (ICC2,1 = 0.72, 95% CI 0.65–0.76, SEM = 15%, SDC 41%), while the reproducibility of differences in thickness changes from single images with statistical adjustment for duplicate measures was poor (ICC2,1 = 0.44, 95% CI 0.33–0.58, SEM = 21%, SDC = 66.5%). Improvements in the testing protocol must be performed in order to enhance reproducibility of US as an outcome measure for abdominal muscle activation
    corecore