954 research outputs found

    Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons

    Get PDF
    Charcot-Marie-Tooth disease type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V) are axonal neuropathies characterized by a phenotype that is more severe in the upper extremities. We previously implicated mutations in the gene encoding glycyl-tRNA synthetase (GARS) as the cause of CMT2D and dSMA-V. GARS is a member of the family of aminoacyl-tRNA synthetases responsible for charging tRNA with cognate amino acids; GARS ligates glycine to tRNAGly. Here, we present functional analyses of disease-associated GARS mutations and show that there are not any significant mutation-associated changes in GARS expression levels; that the majority of identified GARS mutations modeled in yeast severely impair viability; and that, in most cases, mutant GARS protein mislocalizes in neuronal cells. Indeed, four of the five mutations studied show loss-of-function features in at least one assay, suggesting that tRNA-charging deficits play a role in disease pathogenesis. Finally, we detected endogenous GARS-associated granules in the neurite projections of cultured neurons and in the peripheral nerve axons of normal human tissue. These data are particularly important in light of the recent identification of CMT-associated mutations in another tRNA synthetase gene [YARS(tyrosyl-tRNA synthetase gene)]. Together, these findings suggest that tRNA-charging enzymes play a key role in maintaining peripheral axons

    Recurrent and founder mutations in the Netherlands: the cardiac phenotype of DES founder mutations p.S13F and p.N342D

    Get PDF
    Background Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES).We describe new families carrying the p.S13F or p.N342D DES mutations, the cardiac phenotype of all carriers, and the founder effects. Methods We collected the clinical details of all carriers of p. S13F or p.N342D. The founder effects were studied using genealogy and haplotype analysis. Results We identified three new index patients carrying the p.S13F mutation and two new families carrying the p.N342D mutation. In total, we summarised the clinical details of 39 p. S13F carriers (eight index patients) and of 21 p.N342D carriers (three index patients). The cardiac phenotype of p.S13F carriers is fully penetrant and severe, characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement. Although muscle weakness is a prominent and presenting symptom in p.N342D carriers, their cardiac phenotype is similar to that of p.S13F carriers. The founder effects of p.S13F and p.N342D were demonstrated by genealogy and haplotype analysis. Conclusion DRM may occur as an apparently isolated cardiological disorder. The cardiac phenotypes of the DES founder mutations p.S13F and p.N342D are characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement

    Amyloid associated with elastin-staining laminar aggregates in the lungs of patients diagnosed with acute respiratory distress syndrome

    Get PDF
    BACKGROUND: The heterogeneity of conditions underlying respiratory distress, whether classified clinically as acute lung injury (ALI) or the more severe acute respiratory distress syndrome (ARDS), has hampered efforts to identify and more successfully treat these patients. Examination of postmortem lungs among cases clinically diagnosed as ARDS identified a cohort that showed a consistent morphology at the light and electron microscope levels, and featured pathognomonic structures which we termed elastin-staining laminar structures (ELS). METHODS: Postmortem tissues were stained using the Verhoeff-Van Gieson procedure for elastic fibers, and with Congo red for examination under a polarizing microscope. Similar samples were examined by transmission EM. RESULTS: The pathognomonic ELS presented as ordered molecular aggregates when stained using the Verhoeff-van Gieson technique for elastic fibers. In several postmortem lungs, the ELS also displayed apple-green birefringence after staining with Congo red, suggesting the presence of amyloid. Remarkably, most of the postmortem lungs with ELS exhibited no significant acute inflammatory cellular response such as neutrophilic reaction, and little evidence of widespread edema except for focal intra-alveolar hemorrhage. CONCLUSIONS: Postmortem lungs that exhibit the ELS constitute a morphologically-identifiable subgroup of ARDS cases. The ordered nature of the ELS, as indicated by both elastin and amyloid stains, together with little morphological evidence of inflammation or edema, suggests that this cohort of ARDS may represent another form of conformational disease. If this hypothesis is confirmed, it will require a new approach in the diagnosis and treatment of patients who exhibit this form of acute lung injury

    Analysis of the genomic homologous recombination in Theilovirus based on complete genomes

    Get PDF
    At present, Theilovirus is considered to comprise four distinct serotypes, including Theiler's murine encephalomyelitis virus, Vilyuisk human encephalomyelitis virus, Thera virus, and Saffold virus. So far, there is no systematical study that investigated the genomic recombination of Theilovirus. The present study performed the phylogenetic and recombination analysis of Theilovirus over the complete genomes. Seven potentially significant recombination events were identified. However, according to the strains information and references related to the recombinants and their parental strains, four of the recombination events might happen non-naturally. These results will provide valuable hints for future research on evolution and antigenic variability of Theilovirus

    Sporadic fatal insomnia in a young woman: A diagnostic challenge: Case Report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sporadic fatal insomnia (sFI) and fatal familial insomnia (FFI) are rare human prion diseases.</p> <p>Case Presentation</p> <p>We report a case of a 33-year-old female who died of a prion disease for whom the diagnosis of sFI or FFI was not considered clinically. Following death of this patient, an interview with a close family member indicated the patient's illness included a major change in her sleep pattern, corroborating the reported autopsy diagnosis of sFI. Genetic tests identified no prion protein (PrP) gene mutation, but neuropathological examination and molecular study showed protease-resistant PrP (PrP<sup>res</sup>) in several brain regions and severe atrophy of the anterior-ventral and medial-dorsal thalamic nuclei similar to that described in FFI.</p> <p>Conclusions</p> <p>In patients with suspected prion disease, a characteristic change in sleep pattern can be an important clinical clue for identifying sFI or FFI; polysomnography (PSG), genetic analysis, and nuclear imaging may aid in diagnosis.</p

    A polymorphism in the regulatory region of PRNP is associated with increased risk of sporadic Creutzfeldt-Jakob disease

    Get PDF
    Background: Creutzfeldt-Jakob disease (CJD) is a rare transmissible neurodegenerative disorder. An important determinant for CJD risk and phenotype is the M129V polymorphism of the human prion protein gene (PRNP), but there are also other coding and non-coding polymorphisms inside this gene.Methods: We tested whether three non-coding polymorphism located inside the PRNP regulatory region (C-101G, G310C and T385C) were associated with risk of CJD and with age at onset in a United Kingdom population-based sample of 131 sporadic CJD (sCJD) patients and 194 controls.Results: We found no disease association for either PRNP C-101G or PRNP T385C. Although the crude analysis did not show a significant association between PRNP G310C and sCJD (OR: 1.5; 95%CI = 0.7 to 2.9), after adjusting by PRNP M129V genotype, it resulted that being a C allele carrier at PRNP G310C was significantly (p = 0.03) associated with a 2.4 fold increased risk of developing sCJD (95%CI = 1.1 to 5.4). Additionally, haplotypes carrying PRNP 310C coupled with PRNP 129M were significantly overrepresented in patients (p = 0.02) compared to controls. Cases of sCJD carrying a PRNP 310C allele presented at a younger age (on average 8.9 years younger than those without this allele), which was of statistical significance (p = 0.05). As expected, methionine and valine homozygosity at PRNP M129V increased significantly the risk of sCJD, alone and adjusted by PRNP G310C (OR MM/MV = 7.3; 95%CI 3.9 to 13.5 and OR VV/MV = 4.0; 95%CI 1.7 to 9.3).Conclusions: Our findings support the hypothesis that genetic variations in the PRNP promoter may have a role in the pathogenesis of sCJD

    A novel form of human disease with a protease-sensitive prion protein and heterozygosity methionine/valine at codon 129: Case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder in humans included in the group of Transmissible Spongiform Encephalopathies or prion diseases. The vast majority of sCJD cases are molecularly classified according to the abnormal prion protein (PrP<sup>Sc</sup>) conformations along with polymorphism of codon 129 of the PRNP gene. Recently, a novel human disease, termed "protease-sensitive prionopathy", has been described. This disease shows a distinct clinical and neuropathological phenotype and it is associated to an abnormal prion protein more sensitive to protease digestion.</p> <p>Case presentation</p> <p>We report the case of a 75-year-old-man who developed a clinical course and presented pathologic lesions compatible with sporadic Creutzfeldt-Jakob disease, and biochemical findings reminiscent of "protease-sensitive prionopathy". Neuropathological examinations revealed spongiform change mainly affecting the cerebral cortex, putamen/globus pallidus and thalamus, accompanied by mild astrocytosis and microgliosis, with slight involvement of the cerebellum. Confluent vacuoles were absent. Diffuse synaptic PrP deposits in these regions were largely removed following proteinase treatment. PrP deposition, as revealed with 3F4 and 1E4 antibodies, was markedly sensitive to pre-treatment with proteinase K. Molecular analysis of PrP<sup>Sc </sup>showed an abnormal prion protein more sensitive to proteinase K digestion, with a five-band pattern of 28, 24, 21, 19, and 16 kDa, and three aglycosylated isoforms of 19, 16 and 6 kDa. This PrP<sup>Sc </sup>was estimated to be 80% susceptible to digestion while the pathogenic prion protein associated with classical forms of sporadic Creutzfeldt-Jakob disease were only 2% (type VV2) and 23% (type MM1) susceptible. No mutations in the PRNP gene were found and genotype for codon 129 was heterozygous methionine/valine.</p> <p>Conclusions</p> <p>A novel form of human disease with abnormal prion protein sensitive to protease and MV at codon 129 was described. Although clinical signs were compatible with sporadic Creutzfeldt-Jakob disease, the molecular subtype with the abnormal prion protein isoforms showing enhanced protease sensitivity was reminiscent of the "protease-sensitive prionopathy". It remains to be established whether the differences found between the latter and this case are due to the polymorphism at codon 129. Different degrees of proteinase K susceptibility were easily determined with the chemical polymer detection system which could help to detect proteinase-susceptible pathologic prion protein in diseases other than the classical ones.</p
    corecore