2,095 research outputs found

    Hemodynamic responses of unfit healthy women at a training session with Nintendo wii: a possible Impact on the general well-being

    Get PDF
    Aims: The purpose of this study was assess the effect of a training session with Nintendo Wii® on the hemody- namic responses of healthy women not involved in regular physical exercise. Method: Twenty-five healthy unfit women aged 28 ± 6 years played for 10 minutes the game Free Run (Wii Fit Plus). The resting heart rate (RHR), systolic and dia- stolic blood pressures (SBP and DBP), and double (rate-pressure) product (DP) were measured before and after activity. The HR during the activity (exercise heart rate, EHR) was measured every minute. Results: A statistically significant dif- ference was observed between the RHR (75 ± 9 bpm) and the mean EHR (176 ± 15 bpm) (P < 0.001). The EHR remained in the target zone for aerobic exercise until the fifth minute of activity, which coincided with the upper limit of the aerobic zone (80% heart rate reserve (HRR) + RHR) from the sixth to tenth minute. The initial (110 ± 8 mmHg) and final (145 ± 17 mmHg) SBP (P < 0.01) were significantly different, as were the initial (71 ± 8 mmHg) and final (79 ± 9 mmHg) DBP (P < 0.01). A statistically significant difference was observed between the pre- (8.233 ± 1.141 bpm-mmHg) and post- activity (25.590 ± 4.117 bpm-mmHg) DP (P < 0.01). Conclusion: Physical exercise while playing Free Run sufficed to trigger acute hemodynamic changes in healthy women who were not engaged in regular physical exercis

    Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U

    Get PDF
    Background: A large collection of sequenced mycobacteriophages capable of infecting a single host strain of Mycobacterium smegmatis shows considerable genomic diversity with dozens of distinctive types (clusters) and extensive variation within those sharing evident nucleotide sequence similarity. Here we profiled the mycobacterial components of a large composting system at the São Paulo zoo. Results: We isolated and sequenced eight mycobacteriophages using Mycobacterium smegmatis mc2155 as a host. None of these eight phages infected any of mycobacterial strains isolated from the same materials. The phage isolates span considerable genomic diversity, including two phages (Barriga, Nhonho) related to Subcluster A1 phages, two Cluster B phages (Pops, Subcluster B1; Godines, Subcluster B2), three Subcluster F1 phages (Florinda, Girafales, and Quico), and Madruga, a relative of phage Patience with which it constitutes the new Cluster U. Interestingly, the two Subcluster A1 phages and the three Subcluster F1 phages have genomic relationships indicating relatively recent evolution within a geographically isolated niche in the composting system. Conclusions: We predict that composting systems such as those used to obtain these mycobacteriophages will be a rich source for the isolation of additional phages that will expand our view of bacteriophage diversity and evolution

    Niche partitioning of a pathogenic microbiome driven by chemical gradients

    Full text link
    © 2018 The Authors, some rights reserved. Environmental microbial communities are stratified by chemical gradients that shape the structure and function of these systems. Similar chemical gradients exist in the human body, but how they influence these microbial systems is more poorly understood. Understanding these effects can be particularly important for dysbiotic shifts in microbiome structure that are often associated with disease. We show that pH and oxygen strongly partition the microbial community from a diseased human lung into two mutually exclusive communities of pathogens and anaerobes. Antimicrobial treatment disrupted this chemical partitioning, causing complex death, survival, and resistance outcomes that were highly dependent on the individual microorganism and on community stratification. These effects were mathematically modeled, enabling a predictive understanding of this complex polymicrobial system. Harnessing the power of these chemical gradients could be a drug-free method of shaping microbial communities in the human body from undesirable dysbiotic states

    Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts

    Full text link
    © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2–7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100

    Practical computational toolkits for dendrimers and dendrons structure design

    Get PDF
    Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface (GUI) toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.Peer reviewe

    Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation

    Get PDF
    Objective: To investigate the influence of habitual caffeine intake on aerobic exercise performance responses to acute caffeine supplementation. Methods: A double-blind, crossover, counterbalanced study was performed. Forty male endurance-trained cyclists were allocated into tertiles according to their daily caffeine intake: low (58 ± 29 mg.d-1), moderate (143 ± 25 mg.d-1), and high consumers (351 ± 139 mg.d-1). Participants completed three trials in which they performed simulated cycling time-trials in the fastest time possible following ingestion of: caffeine (CAF: 6 mg.kg-1 BM), placebo (PLA), and no supplement (CON). Results: Mixed-model analysis revealed time-trial performance was significantly improved in CAF compared to PLA and CON (29.92±2.18 min vs 30.81±2.67 and 31.14±2.71 min; P = 0.05). Blood lactate and ratings of perceived exertion were not different between trials and tertiles (P>0.05). Conclusion: Performance effects of acute caffeine supplementation during a ~30 min cycling TT performance were not influenced by the level of habitual caffeine consumption
    • …
    corecore