67 research outputs found

    Temperate southern Australian coastal waters are characterised by surprisingly high rates of nitrogen fixation and diversity of diazotrophs

    Get PDF
    Biological dinitrogen (N2) fixation is one mechanism by which specific microorganisms (diazotrophs) can ameliorate nitrogen (N) limitation. Historically, rates of N2 fixation were believed to be limited outside of the low nutrient tropical and subtropical open ocean; however, emerging evidence suggests that N2 fixation is also a significant process within temperate coastal waters. Using a combination of amplicon sequencing, targeting the nitrogenase reductase gene (nifH), quantitative nifH PCR, and 15N2 stable isotope tracer experiments, we investigated spatial patterns of diazotroph assemblage structure and N2 fixation rates within the temperate coastal waters of southern Australia during Austral autumn and summer. Relative to previous studies in open ocean environments, including tropical northern Australia, and tropical and temperate estuaries, our results indicate that high rates of N2 fixation (10–64 nmol L−1 d−1) can occur within the large inverse estuary Spencer Gulf, while comparatively low rates of N2 fixation (2 nmol L−1 d−1) were observed in the adjacent continental shelf waters. Across the dataset, low concentrations of NO3/NO2 were significantly correlated with the highest N2 fixation rates, suggesting that N2 fixation could be an important source of new N in the region as dissolved inorganic N concentrations are typically limiting. Overall, the underlying diazotrophic community was dominated by nifH sequences from Cluster 1 unicellular cyanobacteria of the UCYN-A clade, as well as non-cyanobacterial diazotrophs related to Pseudomonas stutzeri, and Cluster 3 sulfate-reducing deltaproteobacteria. Diazotroph community composition was significantly influenced by salinity and SiO4 concentrations, reflecting the transition from UCYN-A-dominated assemblages in the continental shelf waters, to Cluster 3-dominated assemblages in the hypersaline waters of the inverse estuary. Diverse, transitional diazotrophic communities, comprised of a mixture of UCYN-A and putative heterotrophic bacteria, were observed at the mouth and southern edge of Spencer Gulf, where the highest N2 fixation rates were observed. In contrast to observations in other environments, no seasonal patterns in N2 fixation rates and diazotroph community structure were apparent. Collectively, our findings are consistent with the emerging view that N2 fixation within temperate coastal waters is a previously overlooked dynamic and potentially important component of the marine N cycle

    Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis.

    Get PDF
    Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2-3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i) the whole Vibrio community and (ii) the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2-3 orders of magnitude and V. coralliilyticus abundance increased by four orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems

    Unicellular cyanobacteria are important components of phytoplankton communities in Australia's northern oceanic ecoregions

    Full text link
    © 2019 Moore, Huang, Ostrowski, Mazard, Kumar, Gamage, Brown, Messer, Seymour and Paulsen. The tropical marine environments of northern Australia encompasses a diverse range of geomorphological and oceanographic conditions and high levels of productivity and nitrogen fixation. However, efforts to characterize phytoplankton assemblages in these waters have been restricted to studies using microscopic and pigment analyses, leading to the current consensus that this region is dominated by large diatoms, dinoflagellates, and the marine cyanobacterium Trichodesmium. During an oceanographic transect from the Arafura Sea through the Torres Strait to the Coral Sea, we characterized prokaryotic and eukaryotic phytoplankton communities in surface waters using a combination of flow cytometry and Illumina based 16S and 18S ribosomal RNA amplicon sequencing. Similar to observations in other marine regions around Australian, phytoplankton assemblages throughout this entire region were rich in unicellular picocyanobacterial primary producers while picoeukaryotic phytoplankton formed a consistent, though smaller proportion of the photosynthetic biomass. Major taxonomic groups displayed distinct biogeographic patterns linked to oceanographic and nutrient conditions. Unicellular picocyanobacteria dominated in both flow cytometric abundance and carbon biomass, with members of the Synechococcus genus dominating in the shallower Arafura Sea and Torres Strait where chlorophyll a was relatively higher (averaging 0.4 ± 0.2 mg m-3), and Prochlorococcus dominating in the oligotrophic Coral Sea where chlorophyll a averaged 0.13 ± 0.07 mg m-3. Consistent with previous microscopic and pigment-based observations, we found from sequence analysis that a variety of diatoms (Bacillariophyceae) exhibited high relative abundance in the Arafura Sea and Torres Strait, while dinoflagellates (Dinophyceae) and prymnesiophytes (Prymnesiophyceae) were more abundant in the Coral Sea. Ordination analysis identified temperature, nutrient concentrations and water depth as key drivers of the region's assemblage composition. This is the first molecular and flow cytometric survey of the abundance and diversity of both prokaryotic and picoeukaryotic phytoplankton in this region, and points to the need to include the picocyanobacterial populations as an essential oceanic variable for sustained monitoring in order to better understand the health of these important coastal waters as global oceans change

    Data Descriptor: Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative

    Get PDF
    © 2018 Author(s). Sustained observations of microbial dynamics are rare, especially in southern hemisphere waters. The Australian Marine Microbial Biodiversity Initiative (AMMBI) provides methodologically standardized, continental scale, temporal phylogenetic amplicon sequencing data describing Bacteria, Archaea and microbial Eukarya assemblages. Sequence data is linked to extensive physical, biological and chemical oceanographic contextual information. Samples are collected monthly to seasonally from multiple depths at seven sites: Darwin Harbour (Northern Territory), Yongala (Queensland), North Stradbroke Island (Queensland), Port Hacking (New South Wales), Maria Island (Tasmania), Kangaroo Island (South Australia), Rottnest Island (Western Australia). These sites span ~30° of latitude and ~38° longitude, range from tropical to cold temperate zones, and are influenced by both local and globally significant oceanographic and climatic features. All sequence datasets are provided in both raw and processed fashion. Currently 952 samples are publically available for bacteria and archaea which include 88,951,761 bacterial (72,435 unique) and 70,463,079 archaeal (24,205 unique) 16 S rRNA v1-3 gene sequences, and 388 samples are available for eukaryotes which include 39,801,050 (78,463 unique) 18 S rRNA v4 gene sequences

    Determinants of intra-household food allocation between adults in South Asia - a systematic review.

    Get PDF
    BACKGROUND: Nutrition interventions, often delivered at the household level, could increase their efficiency by channelling resources towards pregnant or lactating women, instead of leaving resources to be disproportionately allocated to traditionally favoured men. However, understanding of how to design targeted nutrition programs is limited by a lack of understanding of the factors affecting the intra-household allocation of food. METHODS: We systematically reviewed literature on the factors affecting the allocation of food to adults in South Asian households (in Afghanistan, Bangladesh, Bhutan, India, Islamic Republic of Iran, Maldives, Nepal, Pakistan, Sri Lanka) and developed a framework of food allocation determinants. Two reviewers independently searched and filtered results from PubMed, Web of Knowledge and Scopus databases by using pre-defined search terms and hand-searching the references from selected papers. Determinants were extracted, categorised into a framework, and narratively described. We used adapted Downs and Black and Critical Appraisal Skills Programme checklists to assess the quality of evidence. RESULTS: Out of 6928 retrieved studies we found 60 relevant results. Recent, high quality evidence was limited and mainly from Bangladesh, India and Nepal. There were no results from Iran, Afghanistan, Maldives, or Bhutan. At the intra-household level, food allocation was determined by relative differences in household members' income, bargaining power, food behaviours, social status, tastes and preferences, and interpersonal relationships. Household-level determinants included wealth, food security, occupation, land ownership, household size, religion / ethnicity / caste, education, and nutrition knowledge. In general, the highest inequity occurred in households experiencing severe or unexpected food insecurity, and also in better-off, high caste households, whereas poorer, low caste but not severely food insecure households were more equitable. Food allocation also varied regionally and seasonally. CONCLUSION: Program benefits may be differentially distributed within households of different socioeconomic status, and targeting of nutrition programs might be improved by influencing determinants that are amenable to change, such as food security, women's employment, or nutrition knowledge. Longitudinal studies in different settings could unravel causal effects. Conclusions are not generalizable to the whole South Asian region, and research is needed in many countries

    Association between neighborhood need and spatial access to food stores and fast food restaurants in neighborhoods of Colonias

    Get PDF
    Objective To determine the extent to which neighborhood needs (socioeconomic deprivation and vehicle availability) are associated with two criteria of food environment access: 1) distance to the nearest food store and fast food restaurant and 2) coverage (number) of food stores and fast food restaurants within a specified network distance of neighborhood areas of colonias, using ground-truthed methods. Methods Data included locational points for 315 food stores and 204 fast food restaurants, and neighborhood characteristics from the 2000 U.S. Census for the 197 census block group (CBG) study area. Neighborhood deprivation and vehicle availability were calculated for each CBG. Minimum distance was determined by calculating network distance from the population-weighted center of each CBG to the nearest supercenter, supermarket, grocery, convenience store, dollar store, mass merchandiser, and fast food restaurant. Coverage was determined by calculating the number of each type of food store and fast food restaurant within a network distance of 1, 3, and 5 miles of each population-weighted CBG center. Neighborhood need and access were examined using Spearman ranked correlations, spatial autocorrelation, and multivariate regression models that adjusted for population density. Results Overall, neighborhoods had best access to convenience stores, fast food restaurants, and dollar stores. After adjusting for population density, residents in neighborhoods with increased deprivation had to travel a significantly greater distance to the nearest supercenter or supermarket, grocery store, mass merchandiser, dollar store, and pharmacy for food items. The results were quite different for association of need with the number of stores within 1 mile. Deprivation was only associated with fast food restaurants; greater deprivation was associated with fewer fast food restaurants within 1 mile. CBG with greater lack of vehicle availability had slightly better access to more supercenters or supermarkets, grocery stores, or fast food restaurants. Increasing deprivation was associated with decreasing numbers of grocery stores, mass merchandisers, dollar stores, and fast food restaurants within 3 miles. Conclusion It is important to understand not only the distance that people must travel to the nearest store to make a purchase, but also how many shopping opportunities they have in order to compare price, quality, and selection. Future research should examine how spatial access to the food environment influences the utilization of food stores and fast food restaurants, and the strategies used by low-income families to obtain food for the household

    Priorities to inform research on marine plastic pollution in Southeast Asia

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Southeast Asia is considered to have some of the highest levels of marine plastic pollution in the world. It is therefore vitally important to increase our understanding of the impacts and risks of plastic pollution to marine ecosystems and the essential services they provide to support the development of mitigation measures in the region. An interdisciplinary, international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine plastic pollution in the region, synthesizing current knowledge and highlighting areas for further research in Southeast Asia. Using an inductive method, 21 research questions emerged under five non-predefined key themes, grouping them according to which: (1) characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the region; (3) describe the biological and chemical modifications marine plastic pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, (5) target regional policies and possible solutions. Questions relating to these research priority areas highlight the importance of better understanding the fate of marine plastic pollution, its degradation, and the impacts and risks it can generate across communities and different ecosystem services. Knowledge of these aspects will help support actions which currently suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue from its point source in the region. Being profoundly affected by marine plastic pollution, Southeast Asian countries provide an opportunity to test the effectiveness of innovative and socially inclusive changes in marine plastic governance, as well as both high and low-tech solutions, which can offer insights and actionable models to the rest of the world.Natural Environment Research CouncilNational Research Foundation, Prime Minister’s Office (Singapore
    • …
    corecore