24 research outputs found

    Cryo-electron tomography of cells: connecting structure and function

    Get PDF
    Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms

    Posttraumatic Stress Disorder Prevalence and Risk of Recurrence in Acute Coronary Syndrome Patients: A Meta-analytic Review

    Get PDF
    BACKGROUND:Acute coronary syndromes (ACS; myocardial infarction or unstable angina) can induce posttraumatic stress disorder (PTSD), and ACS-induced PTSD may increase patients' risk for subsequent cardiac events and mortality. OBJECTIVE:To determine the prevalence of PTSD induced by ACS and to quantify the association between ACS-induced PTSD and adverse clinical outcomes using systematic review and meta-analysis. DATA SOURCES:Articles were identified by searching Ovid MEDLINE, PsycINFO, and Scopus, and through manual search of reference lists. METHODOLOGY/PRINCIPAL FINDINGS:Observational cohort studies that assessed PTSD with specific reference to an ACS event at least 1 month prior. We extracted estimates of the prevalence of ACS-induced PTSD and associations with clinical outcomes, as well as study characteristics. We identified 56 potentially relevant articles, 24 of which met our criteria (N = 2383). Meta-analysis yielded an aggregated prevalence estimate of 12% (95% confidence interval [CI], 9%-16%) for clinically significant symptoms of ACS-induced PTSD in a random effects model. Individual study prevalence estimates varied widely (0%-32%), with significant heterogeneity in estimates explained by the use of a screening instrument (prevalence estimate was 16% [95% CI, 13%-20%] in 16 studies) vs a clinical diagnostic interview (prevalence estimate was 4% [95% CI, 3%-5%] in 8 studies). The aggregated point estimate for the magnitude of the relationship between ACS-induced PTSD and clinical outcomes (ie, mortality and/or ACS recurrence) across the 3 studies that met our criteria (N = 609) suggested a doubling of risk (risk ratio, 2.00; 95% CI, 1.69-2.37) in ACS patients with clinically significant PTSD symptoms relative to patients without PTSD symptoms. CONCLUSIONS/SIGNIFICANCE:This meta-analysis suggests that clinically significant PTSD symptoms induced by ACS are moderately prevalent and are associated with increased risk for recurrent cardiac events and mortality. Further tests of the association of ACS-induced PTSD and clinical outcomes are needed

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF

    Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis

    Get PDF
    Non-human primate models of human disease have an important role in the translation of a new scientific finding in lower species into an effective treatment. In this study, we tested a new therapeutic antibody against the IL-7 receptor alpha chain (CD127), which in a C57BL/6 mouse model of experimental autoimmune encephalomyelitis (EAE) ameliorates disease, demonstrating an important pathogenic function of IL-7. We observed that while the treatment was effective in 100 % of the mice, it was only partially effective in the EAE model in common marmosets (Callithrix jacchus), a small-bodied Neotropical primate. EAE was induced in seven female marmoset twins and treatment with the anti-CD127 mAb or PBS as control was started 21 days after immunization followed by weekly intravenous administration. The anti-CD127 mAb caused functional blockade of IL-7 signaling through its receptor as shown by reduced phosphorylation of STAT5 in lymphocytes upon stimulation with IL-7. Group-wise analysis showed no significant effects on the clinical course and neuropathology. However, paired twin analysis revealed a delayed disease onset in three twins, which were high responders to the immunization. In addition, we observed markedly opposite effects of the antibody on pathological changes in the spinal cord in high versus low responder twins. In conclusion, promising clinical effect of CD127 blockade observed in a standard inbred/SPF mouse EAE model could only be partially replicated in an outbred/non-SPF non-human primate EAE model. Only in high responders to the immunization we found a positive response to the treatment. The mechanism underpinning this dichotomous response will be discussed

    Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision

    Get PDF
    Abstract Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (−195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy
    corecore