3,296 research outputs found

    Density matrix modelling of Ge/GeSi quantum cascade terahertz lasers

    Get PDF
    The prospect of making silicon-based quantum cascade lasers (QCLs) has attracted considerable research interest in recent years, due to their significant potential advantages including a mature Si processing technology, the prospect of integration with Si microelectronics, and superior thermal performance to that of III–V devices. Amongst various proposed designs, with different material compositions and substrate orientations, (001)-oriented n-type Ge/GeSi structures utilising L-valley intersubband transitions appear to be the most promising due to a small quantisation effective mass, and hence large optical matrix elements, and practically realisable layer widths. While all the previous simulations for group IV-based QCLs used the rate equation model, this neglects the coherence effects and is of limited usefulness for predicting QCL performance, particularly in the terahertz range. In this work, a quantum-mechanics transport model for Ge/SiGe QCL simulation has been developed, using the density matrix (DM) approach. In contrast to the existing DM formulations which have been used to simulate III-V based QCLs, the present model accounts for the role of all the QCL states in coherent transport, or in optical transitions, or both. The simulator includes all the principal scattering mechanisms in Ge/SiGe heterostructures: intravalley scattering due to interface roughness, alloy disorder, ionized impurities, electron-acoustic phonon and optical phonon interactions, and intervalley phonon scattering. It was used in conjunction with a semi-automated optimization algorithm to identify heterostructure designs for bound-to-continuum Ge/GeSi QCLs, and to compensate for the gain-reduction associated with diffuse Ge/GeSi interfaces

    Impurity free vacancy disordering of InGaAs quantum dots

    No full text
    The effect of thermal interdiffusion on In(Ga)As∕GaAsquantum dot structures is very significant, due to the large strain and high concentration of indium within the dots. The traditional high temperature annealing conditions used in impurity free vacancy disordering of quantum wells cannot be used for quantum dots, as the dots can be destroyed at these temperatures. However, additional shifts due to capping layers can be achieved at low annealing temperatures. Spin-on-glass, plasma enhanced chemical vapor depositedSiO₂, Si₃N₄, and electron-beam evaporated TiO₂ layers are used to both enhance and suppress the interdiffusion in single and stacked quantum dot structures. After annealing at only 750°C the different cappings enable a shift in band gap energy of 100meV to be obtained across the sample

    Improvements in Blast Fragmentation Models Using Digital Image Processing

    Get PDF
    One of the fundamental requirements for being able to optimise blasting is the ability to predict fragmentation. An accurate blast fragmentation model allows a mine to adjust the fragmentation size for different downstream processes (mill processing versus leach, for instance), and to make real time adjustments in blasting parameters to account for changes in rock mass characteristics (hardness, fracture density, fracture orientation, etc). A number of blast fragmentation models have been developed in the past 40 years such as the Kuz-Ram model [1]. Fragmentation models have a limited usefulness at the present time because: 1. The input parameters are not the most useful for the engineer to determine and data for these parameters are not available throughout the rock mass. 2. Even if the input parameters are known, the models still do not consistently predict the correct fragmentation. This is because the models capture some but not all of the important rock and blast phenomena. 3. The models do not allow for ‘tuning’ at a specific mine site. This paper describes studies that are being conducted to improve blast fragmentation models. The Split image processing software is used for these studies

    Proton-irradiation-induced intermixing of InGaAs quantum dots

    No full text
    Proton irradiation was used to create interdiffusion in In₀.₅Ga₀.₅Asquantum dots(QDs), grown by low-pressure metalorganic chemical vapor deposition. After 25-keV proton irradiation, the QD samples were annealed at two temperatures (700 or 750 °C) for 30 s. It was found that much lower annealing temperatures were needed to recover the photoluminescence signals than in the quantum-well case. Large blueshifts (120 meV) and narrowing of the photoluminescence spectra were seen. Various doses (5×10¹³–1×10¹⁵ cm⁻²) and implant temperatures (20–200 °C) were used to study the interdiffusion processes in these samples. In QD samples, much lower doses were required to achieve similar energy shifts than reported in quantum-well samples

    Effects of rapid thermal annealing on device characteristics of InGaAs/GaAs quantum dot infrared photodetectors

    Get PDF
    In this work, rapid thermal annealing was performed on InGaAs/GaAs quantum dot infrared photodetectors (QDIPs) at different temperatures. The photoluminescence showed a blueshifted spectrum in comparison with the as-grown sample when the annealing temperature was higher than 700 °C, as a result of thermal interdiffusion of the quantum dots (QDs). Correspondingly, the spectral response from the annealed QDIP exhibited a redshift. At the higher annealing temperature of 800 °C, in addition to the largely redshifted photoresponse peak of 7.4 µm (compared with the 6.1 µm of the as-grown QDIP), a high energy peak at 5.6 µm (220 meV) was also observed, leading to a broad spectrum linewidth of 40%. This is due to the large interdiffusion effect which could greatly vary the composition of the QDs and thus increase the relative optical absorption intensity at higher energy. The other important detector characteristics such as dark current, peak responsivity, and detectivity were also measured. It was found that the overall device performance was not affected by low annealing temperature, however, for high annealing temperature, some degradation in device detectivity (but not responsivity) was observed. This is a consequence of increased dark current due to defect formation and increased ground state energy. © 2006 American Institute of Physic

    catena-Poly[[[cis-aqua­dibromido­cobalt(II)]-μ-(pyrazine-2-carb­oxy­lic acid)-κ3 N 1,O:N 4] monohydrate]

    Get PDF
    The title compound, {[CoBr2(C5H4N2O2)(H2O)]·H2O}n, is a one-dimensional coordination polymer which crystallizes as a monohydrate. The asymmetric unit contains one CoII atom in a distorted octa­hedral geometry, forming a chain parallel to [010] with the pyrazine carb­oxy­lic acid ligands coordinating on one side in a bidentate fashion through one N and one O atom, and in a monodentate fashion through a N atom, with N atoms trans, and with both ligands lying in the same plane. The bromide atoms are cis to each other, while a water mol­ecule occupies the final octa­hedral coordination site. The chains are linked together though an O—H⋯Br hydrogen bonding network, and are further stabilized by an O—H⋯Br and O—H⋯O hydrogen-bonding framework with the solvent water mol­ecule

    A new method for detecting signal regions in ordered sequences of real numbers, and application to viral genomic data.

    Get PDF
    We present a fast, robust and parsimonious approach to detecting signals in an ordered sequence of numbers. Our motivation is in seeking a suitable method to take a sequence of scores corresponding to properties of positions in virus genomes, and find outlying regions of low scores. Suitable statistical methods without using complex models or making many assumptions are surprisingly lacking. We resolve this by developing a method that detects regions of low score within sequences of real numbers. The method makes no assumptions a priori about the length of such a region; it gives the explicit location of the region and scores it statistically. It does not use detailed mechanistic models so the method is fast and will be useful in a wide range of applications. We present our approach in detail, and test it on simulated sequences. We show that it is robust to a wide range of signal morphologies, and that it is able to capture multiple signals in the same sequence. Finally we apply it to viral genomic data to identify regions of evolutionary conservation within influenza and rotavirus

    Pharmacology of Heparin and Related Drugs: An Update

    Get PDF
    Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed to the pentasaccharide sequence which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been determined that heparin also has antithrombotic action through interference of the formation of neutrophil extracellular traps which have been determined to play a role in thrombosis. This demonstrated a well-known observation that heparin, given it is a highly negatively charged polysaccharide, interacts with a broad range of biomolecules demonstrating attenuating effect. Since our previous review, there has been an increased interest in these non-anticoagulant effects of heparin, with the beneficial role in patients infected with sars2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. Significance Statement This state of the art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immuno-thrombosis observations, and as non-anticoagulant including a role in the treatment of sars-coronavirus and inflammatory conditions

    Theory and design of quantum cascade lasers in (111) n-type Si/SiGe

    Get PDF
    Although most work towards the realization of group IV quantum cascade lasers (QCLs) has focused on valence band transitions, there are many desirable properties associated with the conduction band. We show that the commonly cited shortcomings of n-type Si/SiGe heterostructures can be overcome by moving to the (111) growth direction. Specifically, a large band offset and low effective mass are achievable and subband degeneracy is preserved. We predict net gain up to lattice temperatures of 90 K in a bound-to-continuum QCL with a double-metal waveguide, and show that a Ge interdiffusion length of at least 8 Å across interfaces is tolerable
    corecore