191 research outputs found

    Anthraquinone modification of microporous carbide derived carbon films for on-chip micro-supercapacitors applications

    Get PDF
    The modification of carbide derived carbon (CDC) thin film electrodes with anthraquinone (AQ) molecules was demonstrated by using pulsed chronoamperometry, in 0.1 M NEt4BF4/ACN solution of AQ diazonium derivative. The functionalization of CDC electrodes was only possible when a critical pore size is reached: only 2 nm pore diameter CDC can be grafted with AQ moieties, smaller pore size leading to a poorly functionalized electrode. High AQ surface coverage of 0.88 × 10−10 mol.cm−2 was determined using 2 nm pore size CDC. Despite a decrease in double layer capacitance value of about 10%, the total capacitance of the AQ-modified on-chip CDC electrodes was twice larger than that of pristine CDC film, leading to high total capacitance value of 44 mF.cm−2 (338 F.cm−3). The cyclability of the AQ-modified on-chip CDC electrode was also investigated. The faradic contribution of AQ grafted molecules progressively decreased during cycling and only 39% of the normalized capacity remained after 500 cycles; this decrease has been assigned to electrostatic repulsion of dianionic AQ confined in narrow micropores in the alkaline media

    Fast Electrochemical Storage Process in Sputtered Nb2O5 Porous Thin Films

    Get PDF
    The formation of a thin film electrode exhibiting high capacity and high rate capabilities is challenging in the field of miniaturized electrochemical energy storage. Here, we present an elegant strategy to tune the morphology and the properties of sputtered porous Nb2O5 thin films deposited on Si-based substrates via the magnetron sputtering deposition technique. Kinetic analysis of the redox reactions is studied to qualify the charge storage process, where we observe a non-diffusion-controlled mechanism within the porous niobium pentoxide thin film. To improve the surface capacity of the Nb2O5 porous electrode, the thickness is progressively increased up to 0.94 μm, providing a surface capacity close to 60 μAh·cm–2 at 1 mV·s–1. The fabrication of high energy density miniaturized power sources based on the optimized T-Nb2O5 films could be achieved for Internet of Things applications requiring high rate capability

    Everlasting sensor networks

    Get PDF
    Poster for " L'énergie demain. Transition énergétique : recherches et ingénierie " symposium. May 30-31, 2013, MINES ParisTechWithin the team CSAM (Circuits, Systèmes et Applications des Microondes) of IEMN (Institut d'Électronique, de Microélectronique et de Nanotechnologie) and within IRCICA (Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - USR CNRS 3080) we develop a research on ultra low power sensor networks. Our goal is to minimize the energy consumption so that the life duration of the network could be infinitely long. We develop studies including nanotechnologies (energy harvesting, storage devices), RF front-ends design, energy management but also radio channel and interference modeling and MAC layer optimization

    Synthesis of T-Nb2O5 thin-films deposited by Atomic Layer Deposition for miniaturized electrochemical energy storage devices

    Get PDF
    Atomic Layer Deposition has been used to grow 30 to 90 nm-thick amorphous Nb2O5 films onto Pt current collectors deposited on Si wafer. While T-Nb2O5 polymorph is obtained by further annealing at 750 °C, the film thickness and the resulting electrode areal capacity are successfully controlled by tuning the number of ALD cycles. The electrochemical analysis reveals a lithium ion intercalation redox mechanism in the T-Nb2O5 electrode. An electrode areal capacity of 8 μAh cm-² could be achieved at 1 C, with only 40% capacity loss at 30 C(2 minutes discharging time). This paper aims at demonstrating the use of Atomic Layer Deposition method in the fabrication of Nb205-based on-chip micro-devices for Internet of Things (IoT) applications

    Challenges and prospects of 3D micro-supercapacitors for powering the internet of things: [Invited]

    No full text
    http://2020.cimtec-congress.org/22 invited speakers dans ce seul symposium (20 symposiums)initialement programmé : june 15-19International audienc

    Miniaturisation du stockage électrochimique de l'énergie : vers la fabrication de micro-batteries performantes tout solide: [Invité]

    No full text
    International audienceLa miniaturisation des objets connectés impose la fabrication de sources de stockage d’énergie de plus en plus petites. A ce titre, la fabrication de batteries miniatures tout solide (appelées micro-batteries) performantes est un challenge scientifique où la tendance est de passer d’une technologie planaire à une approche 3D pour exacerber leurs performances. Cette présentation synthétisera les dernières avancées effectuées dans le domaine des micro-batteries à ions lithium. Elle s’ouvrira vers d’autres technologies de batteries miniatures comme les systèmes métal-air

    Challenges and prospects of 3D micro-supercapacitors for powering the internet of things: [Invited]

    No full text
    http://2020.cimtec-congress.org/22 invited speakers dans ce seul symposium (20 symposiums)initialement programmé : june 15-19International audienc
    corecore