109 research outputs found

    A Higher-Order Semantics for Metaquerying in OWL 2 QL

    Get PDF
    Inspired by recent work on higher-order Description Logics, we propose HOS, a new semantics for OWL 2 QL ontologies. We then consider SPARQL queries which are legal under the direct semantics entailment regime, we extend them with logical union, existential variables, and unrestricted use of variables so as to express meaningful meta-level queries. We show that both satisfiability checking and answering instance queries with metavariables have the same ABox complexity as under direct semantic

    An FTIR Microspectroscopy Ratiometric Approach for Monitoring X-ray Irradiation Effects on SH-SY5Y Human Neuroblastoma Cells

    Get PDF
    The ability of Fourier transform infrared (FTIR) spectroscopy in analyzing cells at a molecular level was exploited for investigating the biochemical changes induced in protein, nucleic acid, lipid, and carbohydrate content of cells after irradiation by graded X-ray doses. Infrared spectra from in vitro SH-SY5Y neuroblastoma cells following exposure to X-rays (0, 2, 4, 6, 8, 10 Gy) were analyzed using a ratiometric approach by evaluating the ratios between the absorbance of significant peaks. The spectroscopic investigation was performed on cells fixed immediately (t0 cells) and 24 h (t24 cells) after irradiation to study both the initial radiation-induced damage and the effect of the ensuing cellular repair processes. The analysis of infrared spectra allowed us to detect changes in proteins, lipids, and nucleic acids attributable to X-ray exposure. The ratiometric analysis was able to quantify changes for the protein, lipid, and DNA components and to suggest the occurrence of apoptosis processes. The ratiometric study of Amide I band indicated also that the secondary structure of proteins was significantly modified. The comparison between the results from t0 and t24 cells indicated the occurrence of cellular recovery processes. The adopted approach can provide a very direct way to monitor changes for specific cellular components and can represent a valuable tool for developing innovative strategies to monitor cancer radiotherapy outcome

    Uncovering the potential of blockchain in the agri-food supply chain. An interdisciplinary case study

    Get PDF
    This paper explores how Blockchain technology (BCT) can be integrated in the agri-food supply chain (ASC) and how BCT-based networks are formed. To do this, the paper describes a BCT solution, designed to enhance traceability, and analyses its adoption in two small firms. Adopting an interdisciplinary approach and the Actor-Network Theory (ANT), the findings have revealed that BCT improves how data is collected and has changed how firms interact with stakeholders and customers. Firms have enhanced their reputations and started targeting new domestic and international markets. Technical and economic challenges were found when persuading actors to participate in the BCT-based network

    Roosevelt Fountain Wind-Driven VFD Pump Control

    Get PDF
    The Roosevelt Fountain is a centerpiece of the Brookfield Zoo. The largest jet can send water vertically up to 18.3m. On windy days, water from the main jet blows mist outside the boundaries of the fountain and onto the civilian walkway. This affects the visitors of the zoo. The present countermeasure to this complication requires a manual valve adjustment or temporary pump shutdown. This causes the zoo staff to have to divert from their usual tasks, wasting time. This countermeasure also wastes energy, causing the zoo to overspend on electricity

    Micro Sensing of pH Levels in Biological Samples by Graphene-Based Raman Spectroscopy

    Get PDF
    Graphene provides a unique way for sensing local pH level of substances on micrometric scale, with important implications for the monitoring of cellular metabolic activities where protonic excretion could occur. Doping modifications of graphene, induced by the contact of the graphene with different pH solutions were investigated by micro-Raman spectroscopy in order to develop a pH biosensor. To test the developed biosensor with real biological systems, the pH values of cell culture media in different conditions were evaluated

    Answering metaqueries over Hi(OWL 2 QL) ontologies

    Get PDF
    Hi(OWL 2 QL) is a new ontology language with the OWL2QL syntax and a specific semantics designed to support metamodeling and metaquerying. In this paper we investigate the problem of answering metaqueries in Hi(OWL 2 QL), which are unions of conjunctive queries with both ABox and TBox atoms. We first focus on a specific class of ontologies, called TBox-complete, where there is no uncertainty about TBox axioms, and show that query answering in this case has the same complexity (both data and combined) as in OWL 2 QL. We then move to general ontologies and show that answering metaqueries is coNP-complete with respect to ontology complexity, Π2p-complete with respect to combined complexity, and remains AC0 with respect to ABox complexity. Finally, we present an optimized query answering algorithm that can be used for TBox-complete ontologies

    Evaluation of Proton-Induced Biomolecular Changes in MCF-10A Breast Cells by Means of FT-IR Microspectroscopy

    Get PDF
    Radiotherapy (RT) with accelerated beams of charged particles (protons and carbon ions), also known as hadrontherapy, is a treatment modality that is increasingly being adopted thanks to the several benefits that it grants compared to conventional radiotherapy (CRT) treatments performed by means of high-energy photons/electrons. Hence, information about the biomolecular effects in exposed cells caused by such particles is needed to better realize the underlying radiobiological mechanisms and to improve this therapeutic strategy. To this end, Fourier transform infrared microspectroscopy (-FT-IR) can be usefully employed, in addition to long-established radiobiological techniques, since it is currently considered a helpful tool for examining radiation-induced cellular changes. In the present study, MCF-10A breast cells were chosen to evaluate the effects of proton exposure using -FT-IR. They were exposed to different proton doses and fixed at various times after exposure to evaluate direct effects due to proton exposure and the kinetics of DNA damage repair. Irradiated and control cells were examined in transflection mode using low-e substrates that have been recently demonstrated to offer a fast and direct way to examine proton-exposed cells. The acquired spectra were analyzed using a deconvolution procedure and a ratiometric approach, both of which showed the different contributions of DNA, protein, lipid, and carbohydrate cell components. These changes were particularly significant for cells fixed 48 and 72 h after exposure. Lipid changes were related to variations in membrane fluidity, and evidence of DNA damage was highlighted. The analysis of the Amide III band also indicated changes that could be related to different enzyme contributions in DNA repair

    FT-IR Transflection Micro-Spectroscopy Study on Normal Human Breast Cells after Exposure to a Proton Beam

    Get PDF
    Fourier transform infrared micro-spectroscopy (mu-FT-IR) is nowadays considered a valuable tool for investigating the changes occurring in human cells after exposure to ionizing radiation. Recently, considerable attention has been devoted to the use of this optical technique in the study of cells exposed to proton beams, that are being increasingly adopted in cancer therapy. Different experimental configurations are used for proton irradiation and subsequent spectra acquisition. To facilitate the use of mu-FT-IR, it may be useful to investigate new experimental approaches capable of speeding up and simplifying the irradiation and measurements phases. Here, we propose the use of low-e-substrates slides for cell culture, allowing the irradiation and spectra acquisition in transflection mode in a fast and direct way. In recent years, there has been a wide debate about the validity of these supports, but many researchers agree that the artifacts due to the presence of the electromagnetic standing wave effects are negligible in many practical cases. We investigated human normal breast cells (MCF-10 cell line) fixed immediately after the irradiation with graded proton radiation doses (0, 0.5, 2, and 4 Gy). The spectra obtained in transflection geometry showed characteristics very similar to those present in the spectra acquired in transmission geometry and confirm the validity of the chosen approach. The analysis of spectra indicates the occurrence of significant changes in DNA and lipids components of cells. Modifications in protein secondary structure are also evidenced
    • …
    corecore