19,373 research outputs found

    On the Lagrangian description of unsteady boundary layer separation. Part 2: The spinning sphere

    Get PDF
    A theory to explain the initial stages of unsteady separation was proposed by Van Dommelen and Cowley (1989). This theory is verified for the separation process that occurs at the equatorial plane of a sphere or a spheroid which is impulsively spun around an axis of symmetry. A Lagrangian numerical scheme is developed which gives results in good agreement with Eulerian computations, but which is significantly more accurate. This increased accuracy, and a simpler structure to the solution, also allows verification of the Eulerian structure, including the presence of logarithmic terms. Further, while the Eulerian computations broke down at the first occurrence of separation, it is found that the Lagrangian computation can be continued. It is argued that this separated solution does provide useful insight into the further evolution of the separated flow. A remarkable conclusion is that an unseparated vorticity layer at the wall, a familiar feature in unsteady separation processes, disappears in finite time

    On the Jacobi-Metric Stability Criterion

    Get PDF
    We investigate the exact relation existing between the stability equation for the solutions of a mechanical system and the geodesic deviation equation of the associated geodesic problem in the Jacobi metric constructed via the Maupertuis-Jacobi Principle. We conclude that the dynamical and geometrical approaches to the stability/instability problem are not equivalent.Comment: 14 pages, no figure
    corecore